Unknown

Dataset Information

0

Enhanced Catalytic Hydrogenation Performance of Rh-Co2O3 Heteroaggregate Nanostructures by in Situ Transformation of Rh@Co Core-Shell Nanoparticles.


ABSTRACT: In this work, poly(vinylpyrrolidone)-stabilized 3-5 nm Rh@Co core-shell nanoparticles were synthesized by a sequential reduction method, which was further in situ transformed into Rh-Co2O3 heteroaggregate nanostructures on alumina supports. The studies of XRD, HAADF-STEM images with phase mappings, XPS, TPR, and DRIFT-IR with CO probes confirm that the as-synthesized Rh@Co nanoparticles were core-shell-like structures with Rh cores and Co-rich shells, and Rh-Co2O3 heteroaggregate nanostructures are obtained by calcination of Rh@Co nanoparticles and subsequent selective H2 reduction. The Rh-Co2O3/Al2O3 nanostructures demonstrated enhanced catalytic performance for hydrogenations of various substituted nitroaromatics relative to individual Rh/Al2O3 and illustrated a high catalytic stability during recycling experiments for o-nitrophenol hydrogenation reactions. The catalytic performance enhancement of Rh-Co2O3/Al2O3 nanocatalysts is ascribed to the Rh-Co2O3 interfaces where the Rh-Co2O3 interaction not only prevents the active Rh particles from agglomeration but also promotes the catalytic hydrogenation performance.

SUBMITTER: Zhang Q 

PROVIDER: S-EPMC6906936 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Enhanced Catalytic Hydrogenation Performance of Rh-Co<sub>2</sub>O<sub>3</sub> Heteroaggregate Nanostructures by in Situ Transformation of Rh@Co Core-Shell Nanoparticles.

Zhang Qiuyang Q   Xu Caiyun C   Yin Hongfeng H   Zhou Shenghu S  

ACS omega 20191122 24


In this work, poly(vinylpyrrolidone)-stabilized 3-5 nm Rh@Co core-shell nanoparticles were synthesized by a sequential reduction method, which was further in situ transformed into Rh-Co<sub>2</sub>O<sub>3</sub> heteroaggregate nanostructures on alumina supports. The studies of XRD, HAADF-STEM images with phase mappings, XPS, TPR, and DRIFT-IR with CO probes confirm that the as-synthesized Rh@Co nanoparticles were core-shell-like structures with Rh cores and Co-rich shells, and Rh-Co<sub>2</sub>O  ...[more]

Similar Datasets

| S-EPMC9929264 | biostudies-literature
| S-EPMC10510760 | biostudies-literature
| S-EPMC5547122 | biostudies-literature
| S-EPMC9062470 | biostudies-literature
| S-EPMC8695612 | biostudies-literature
| S-EPMC9905440 | biostudies-literature
| S-EPMC9975827 | biostudies-literature
| S-EPMC9085651 | biostudies-literature
| S-EPMC9038757 | biostudies-literature
| S-EPMC9400056 | biostudies-literature