Unknown

Dataset Information

0

SAM68-Specific Splicing Is Required for Proper Selection of Alternative 3' UTR Isoforms in the Nervous System.


ABSTRACT: Neuronal alternative splicing is a core mechanism for functional diversification. We previously found that STAR family proteins (SAM68, SLM1, SLM2) regulate spatiotemporal alternative splicing in the nervous system. However, the whole aspect of alternative splicing programs by STARs remains unclear. Here, we performed a transcriptomic analysis using SAM68 knockout and SAM68/SLM1 double-knockout midbrains. We revealed different alternative splicing activity between SAM68 and SLM1; SAM68 preferentially targets alternative 3' UTR exons. SAM68 knockout causes a long-to-short isoform switch of a number of neuronal targets through the alteration in alternative last exon (ALE) selection or alternative polyadenylation. The altered ALE usage of a novel target, interleukin 1 receptor accessory protein (Il1rap), results in remarkable conversion from a membrane-bound type to a secreted type in Sam68KO brains. Proper ALE selection is necessary for IL1RAP neuronal function. Thus the SAM68-specific splicing program provides a mechanism for neuronal selection of alternative 3' UTR isoforms.

SUBMITTER: Iijima Y 

PROVIDER: S-EPMC6909182 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

SAM68-Specific Splicing Is Required for Proper Selection of Alternative 3' UTR Isoforms in the Nervous System.

Iijima Yoko Y   Tanaka Masami M   Suzuki Satoko S   Hauser David D   Tanaka Masayuki M   Okada Chisa C   Ito Masatoshi M   Ayukawa Noriko N   Sato Yuji Y   Ohtsuka Masato M   Scheiffele Peter P   Iijima Takatoshi T  

iScience 20191116


Neuronal alternative splicing is a core mechanism for functional diversification. We previously found that STAR family proteins (SAM68, SLM1, SLM2) regulate spatiotemporal alternative splicing in the nervous system. However, the whole aspect of alternative splicing programs by STARs remains unclear. Here, we performed a transcriptomic analysis using SAM68 knockout and SAM68/SLM1 double-knockout midbrains. We revealed different alternative splicing activity between SAM68 and SLM1; SAM68 preferent  ...[more]

Similar Datasets

2019-12-29 | GSE110258 | GEO
| PRJNA433317 | ENA
| S-EPMC4420930 | biostudies-literature
| S-EPMC5566528 | biostudies-other
| S-EPMC2394768 | biostudies-literature
| S-EPMC3246220 | biostudies-literature
| S-EPMC6690840 | biostudies-literature
| S-EPMC2064079 | biostudies-literature
| S-EPMC7210197 | biostudies-literature
| S-EPMC51567 | biostudies-other