Unknown

Dataset Information

0

In vivo conversion of rat astrocytes into neuronal cells through neural stem cells in injured spinal cord with a single zinc-finger transcription factor.


ABSTRACT:

Background

Spinal cord injury (SCI) results in glial scar formation and irreversible neuronal loss, which finally leads to functional impairments and long-term disability. Our previous studies have demonstrated that the ectopic expression of Zfp521 reprograms fibroblasts and astrocytes into induced neural stem cells (iNSCs). However, it remains unclear whether treatment with Zfp521 also affects endogenous astrocytes, thus promoting further functional recovery following SCI.

Methods

Rat astrocytes were transdifferentiated into neural stem cells in vitro by ZFP521 or Sox2. Then, ZFP521 was applied to the spinal cord injury site of a rat. Transduction, real-time PCR, immunohistofluorescence, and function assessments were performed at 6?weeks post-transduction to evaluate improvement and in vivo lineage reprogramming of astrocytes.

Results

Here, we show that Zfp521 is more efficient in reprogramming cultured astrocytes compared with Sox2. In the injured spinal cord of an adult rat, resident astrocytes can be reprogrammed into neurons through a progenitor stage by Zfp521. Importantly, this treatment improves the functional abilities of the rats as evaluated by the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and further by calculation of its subscores. There was enhanced locomotor activity in the hind limbs, step length, toe spread, foot length, and paw area. In addition, motor evoked potential recordings demonstrated the functional integrity of the spinal cord.

Conclusions

These results have indicated that the generation of iNSCs or neurons from endogenous astrocytes by in situ reprogramming might be a potential strategy for SCI repair.

SUBMITTER: Zarei-Kheirabadi M 

PROVIDER: S-EPMC6916443 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

In vivo conversion of rat astrocytes into neuronal cells through neural stem cells in injured spinal cord with a single zinc-finger transcription factor.

Zarei-Kheirabadi Masoumeh M   Hesaraki Mahdi M   Kiani Sahar S   Baharvand Hossein H  

Stem cell research & therapy 20191216 1


<h4>Background</h4>Spinal cord injury (SCI) results in glial scar formation and irreversible neuronal loss, which finally leads to functional impairments and long-term disability. Our previous studies have demonstrated that the ectopic expression of Zfp521 reprograms fibroblasts and astrocytes into induced neural stem cells (iNSCs). However, it remains unclear whether treatment with Zfp521 also affects endogenous astrocytes, thus promoting further functional recovery following SCI.<h4>Methods</h  ...[more]

Similar Datasets

| S-EPMC3966078 | biostudies-literature
| S-EPMC6628227 | biostudies-literature
| S-EPMC4026285 | biostudies-literature
| S-EPMC2682457 | biostudies-literature
| S-EPMC3689933 | biostudies-literature
| S-EPMC5637237 | biostudies-literature
| S-EPMC2077035 | biostudies-literature
| S-EPMC6676883 | biostudies-literature