Unknown

Dataset Information

0

Time after Time: Temporal Variation in the Effects of Grass and Forb Species on Soil Bacterial and Fungal Communities.


ABSTRACT: Microorganisms are found everywhere and have critical roles in most ecosystems, but compared to plants and animals, little is known about their temporal dynamics. Here, we investigated the temporal stability of bacterial and fungal communities in the soil and how their temporal variation varies between grasses and forb species. We established 30 outdoor mesocosms consisting of six plant monocultures and followed microbial communities for an entire year in these soils. We demonstrate that bacterial communities vary greatly over time and that turnover plays an important role in shaping microbial communities. We further show that bacterial communities rapidly shift from one state to another and that this is related to changes in the relative contribution of certain taxa rather than to extinction. Fungal soil communities are more stable over time, and a large part of the variation can be explained by plant species and by whether they are grasses or forbs. Our findings show that the soil bacterial community is shaped by time, while plant group and plant species-specific effects drive soil fungal communities. This has important implications for plant-soil research and highlights that temporal dynamics of soil communities cannot be ignored in studies on plant-soil feedback and microbial community composition and function.IMPORTANCE Our findings highlight how soil fungal and bacterial communities respond to time, season, and plant species identity. We found that succession shapes the soil bacterial community, while plant species and the type of plant species that grows in the soil drive the assembly of soil fungal communities. Future research on the effects of plants on soil microbes should take into consideration the relative roles of both time and plant growth on creating soil legacies that impact future plants growing in the soil. Understanding the temporal (in)stability of microbial communities in soils will be crucial for predicting soil microbial composition and functioning, especially as plant species compositions will shift with global climatic changes and land-use alterations. As fungal and bacterial communities respond to different environmental cues, our study also highlights that the selection of study organisms to answer specific ecological questions is not trivial and that the timing of sampling can greatly affect the conclusions made from these studies.

SUBMITTER: Hannula SE 

PROVIDER: S-EPMC6918080 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Time after Time: Temporal Variation in the Effects of Grass and Forb Species on Soil Bacterial and Fungal Communities.

Hannula S Emilia SE   Kielak Anna M AM   Steinauer Katja K   Huberty Martine M   Jongen Renske R   De Long Jonathan R JR   Heinen Robin R   Bezemer T Martijn TM  

mBio 20191217 6


Microorganisms are found everywhere and have critical roles in most ecosystems, but compared to plants and animals, little is known about their temporal dynamics. Here, we investigated the temporal stability of bacterial and fungal communities in the soil and how their temporal variation varies between grasses and forb species. We established 30 outdoor mesocosms consisting of six plant monocultures and followed microbial communities for an entire year in these soils. We demonstrate that bacteri  ...[more]

Similar Datasets

| S-EPMC6554343 | biostudies-literature
| S-EPMC6619450 | biostudies-literature
| S-EPMC3527478 | biostudies-literature
| S-EPMC262310 | biostudies-literature
| S-EPMC6545100 | biostudies-literature
| S-EPMC7329890 | biostudies-literature
| S-EPMC6061463 | biostudies-literature
| S-EPMC5900040 | biostudies-literature
| S-EPMC6152964 | biostudies-literature
| S-EPMC7022789 | biostudies-literature