Unknown

Dataset Information

0

Carbonic anhydrase 2 (CAII) supports tumor blood endothelial cell survival under lactic acidosis in the tumor microenvironment.


ABSTRACT:

Background

Tumor endothelial cells (TECs) perform tumor angiogenesis, which is essential for tumor growth and metastasis. Tumor cells produce large amounts of lactic acid from glycolysis; however, the mechanism underlying the survival of TECs to enable tumor angiogenesis under high lactic acid conditions in tumors remains poorly understood.

Methodology

The metabolomes of TECs and normal endothelial cells (NECs) were analyzed by capillary electrophoresis time-of-flight mass spectrometry. The expressions of pH regulators in TECs and NECs were determined by quantitative reverse transcription-PCR. Cell proliferation was measured by the MTS assay. Western blotting and ELISA were used to validate monocarboxylate transporter 1 and carbonic anhydrase 2 (CAII) protein expression within the cells, respectively. Human tumor xenograft models were used to access the effect of CA inhibition on tumor angiogenesis. Immunohistochemical staining was used to observe CAII expression, quantify tumor microvasculature, microvessel pericyte coverage, and hypoxia.

Results

The present study shows that, unlike NECs, TECs proliferate in lactic acidic. TECs showed an upregulated CAII expression both in vitro and in vivo. CAII knockdown decreased TEC survival under lactic acidosis and nutrient-replete conditions. Vascular endothelial growth factor A and vascular endothelial growth factor receptor signaling induced CAII expression in NECs. CAII inhibition with acetazolamide minimally reduced tumor angiogenesis in vivo. However, matured blood vessel number increased after acetazolamide treatment, similar to bevacizumab treatment. Additionally, acetazolamide-treated mice showed decreased lung metastasis.

Conclusion

These findings suggest that due to their effect on blood vessel maturity, pH regulators like CAII are promising targets of antiangiogenic therapy. Video Abstract.

SUBMITTER: Annan DA 

PROVIDER: S-EPMC6918655 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Carbonic anhydrase 2 (CAII) supports tumor blood endothelial cell survival under lactic acidosis in the tumor microenvironment.

Annan Dorcas A DA   Maishi Nako N   Soga Tomoyoshi T   Dawood Randa R   Li Cong C   Kikuchi Hiroshi H   Hojo Takayuki T   Morimoto Masahiro M   Kitamura Tetsuya T   Alam Mohammad Towfik MT   Minowa Kazuyuki K   Shinohara Nobuo N   Nam Jin-Min JM   Hida Yasuhiro Y   Hida Kyoko K  

Cell communication and signaling : CCS 20191217 1


<h4>Background</h4>Tumor endothelial cells (TECs) perform tumor angiogenesis, which is essential for tumor growth and metastasis. Tumor cells produce large amounts of lactic acid from glycolysis; however, the mechanism underlying the survival of TECs to enable tumor angiogenesis under high lactic acid conditions in tumors remains poorly understood.<h4>Methodology</h4>The metabolomes of TECs and normal endothelial cells (NECs) were analyzed by capillary electrophoresis time-of-flight mass spectro  ...[more]

Similar Datasets

| S-EPMC7602163 | biostudies-literature
| S-EPMC4061103 | biostudies-literature
| S-EPMC7802620 | biostudies-literature
| S-EPMC7680889 | biostudies-literature
| S-EPMC6886241 | biostudies-literature
| S-EPMC5986270 | biostudies-literature
| S-EPMC10046917 | biostudies-literature
2012-03-25 | GSE36625 | GEO
| S-EPMC3041061 | biostudies-literature
2012-03-25 | E-GEOD-36625 | biostudies-arrayexpress