A20 deficiency in multipotent progenitors perturbs quiescence of hematopoietic stem cells.
Ontology highlight
ABSTRACT: Inflammatory signals have been shown to play a critical role in controlling the maintenance and functions of hematopoietic stem cells (HSCs). While the significance of inflammation in hematopoiesis has begun to unfold, molecular mechanisms and players that govern this mode of HSC regulation remain largely unknown. The E3 ubiquitin ligase A20 has been considered as a central gatekeeper of inflammation. Here, we have specifically depleted A20 in multi-potent progenitors (MPPs) and studied its impact on hematopoiesis. Our data suggest that lack of A20 in Flt3+ progenitors causes modest alterations in hematopoietic differentiation. Analysis of hematopoietic stem and progenitor cell (HSPC) pool revealed alterations in HSPC subsets including, HSCs, MPP1, MPP2, MPP3 and MPP4. Interestingly, A20 deficiency in MPPs caused loss of HSC quiescence and compromised long-term hematopoietic reconstitution. Mechanistic studies identified that A20 deficiency caused elevated levels of Interferon-γ signaling and downregulation of p57 in HSCs. In essence, these studies identified A20 as a key regulator of HSC quiescence and cell fate decisions.
SUBMITTER: Nakagawa MM
PROVIDER: S-EPMC6919550 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA