Tuning of ionic mobility to improve the resistive switching behavior of Zn-doped CeO2.
Ontology highlight
ABSTRACT: Correlation between the resistive switching characteristics of Au/Zn-doped CeO2/Au devices and ionic mobility of CeO2 altered by the dopant concentration were explored. It was found that the ionic mobility of CeO2 has a profound effect on the operating voltages of the devices. The magnitude of operating voltage was observed to decrease when the doping concentration of Zn was increased up to 14%. After further increasing the doping level to 24%, the device hardly exhibits any resistive switching. At a low doping concentration, only isolated Vo existed in the CeO2 lattice. At an intermediate doping concentration, the association between dopant and Vo formed (Zn, Vo)× defect clusters. Low number density of these defect clusters initially favored the formation of Vo filament and led to a reduction in operating voltage. As the size and number density of (Zn, Vo)× defect clusters increased at a higher doping concentration, the ionic conductivity was limited with the trapping of isolated Vo by these defect clusters, which resulted in the diminishing of resistive switching. This research work provides a strategy for tuning the mobility of Vo to modulate resistive switching characteristics for non-volatile memory applications.
SUBMITTER: Rehman S
PROVIDER: S-EPMC6920484 | biostudies-literature | 2019 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA