Relationships between seafood consumption during pregnancy and childhood and neurocognitive development: Two systematic reviews.
Ontology highlight
ABSTRACT: Abundant data are now available to evaluate relationships between seafood consumption in pregnancy and childhood and neurocognitive development. We conducted two systematic reviews utilizing methodologies detailed by the Dietary Guidelines for Americans Scientific Advisory Committee 2020-2025. After reviewing 44 publications on 106,237 mother-offspring pairs and 25,960 children, our technical expert committee developed two conclusion statements that included the following: "Moderate and consistent evidence indicates that consumption of a wide range of amounts and types of commercially available seafood during pregnancy is associated with improved neurocognitive development of offspring as compared to eating no seafood. Overall, benefits to neurocognitive development began at the lowest amounts of seafood consumed (?4 oz/wk) and continued through the highest amounts, above 12 oz/wk, some range up to >100 oz/wk.", "This evidence does not meet the criteria for "strong evidence" only due to a paucity of randomized controlled trials that may not be ethical or feasible to conduct for pregnancy" and "Moderate and consistent evidence indicates that consumption of >4 oz/wk and likely >12 oz/wk of seafood during childhood has beneficial associations with neurocognitive outcomes." No net adverse neurocognitive outcomes were reported among offspring at the highest ranges of seafood intakes despite associated increases in mercury exposures. Data are insufficient for conclusive statements regarding lactation, optimal amounts, categories or specific species characterized by mercury content and neurocognitive development; although there is some evidence that dark/oily seafood may be more beneficial. Research was conducted in healthy women and children and is generalizable to US populations. Assessment of seafood as a whole food integrates inherently integrates any adverse effects from neurotoxicants, if any, and benefits to neurocognition from omega-3 fats, as well as other nutrients critical to optimal neurological development. Understanding of the effects of seafood consumption on neurocognition can have significant public health implications.
SUBMITTER: Hibbeln JR
PROVIDER: S-EPMC6924512 | biostudies-literature | 2019 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA