Unknown

Dataset Information

0

Data on the role of miR-144 in regulating fetal hemoglobin production in retinal pigmented epithelial cells.


ABSTRACT: The data presented in this article are connected to our related article entitled "Inhibiting microRNA-144 potentiates Nrf2-dependent antioxidant signaling in retinal pigmented epithelial cells (RPE) and protects against oxidative stress-induced outer retinal degeneration" [1] where, we have shown that miR-144 induces oxidative stress in RPE cells by targeting Nrf2 expression. Previous studies from our laboratory have shown that like erythroid cells, RPE cells express ?, ? and ?-globin and produce hemoglobin locally in retina. Further, the ability to therapeutically reactivate fetal hemoglobin production in these cells, a strategy of high potential benefit in the treatment of complications of sickle cell disease, including retinopathy, is impacted by Nrf2-mediated signaling [2,3]. Studies by others [4,5] provide compelling evidence of a regulatory role for miR-144 and Nrf2 in fetal hemoglobin production in erythroid cells. Our current work confirms this finding in human RPE. We additionally show that miR-144-mediated regulation of fetal hemoglobin production in RPE cells is independent of kruppel like factor 1 (KLF-1). This supports the plausibility that in RPE, hemoglobin, particularly fetal hemoglobin, may be important for functions other than oxygen transport (e.g., antioxidant defense). Indeed, our new data on miR-144 in RPE supports strongly the potential mechanistic between fetal hemoglobin production and the regulation of oxidative stress in this cell type [1].

SUBMITTER: Jadeja RN 

PROVIDER: S-EPMC6926119 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Data on the role of miR-144 in regulating fetal hemoglobin production in retinal pigmented epithelial cells.

Jadeja Ravirajsinh N RN   Martin Pamela M PM  

Data in brief 20191123


The data presented in this article are connected to our related article entitled "Inhibiting microRNA-144 potentiates Nrf2-dependent antioxidant signaling in retinal pigmented epithelial cells (RPE) and protects against oxidative stress-induced outer retinal degeneration" [1] where, we have shown that miR-144 induces oxidative stress in RPE cells by targeting Nrf2 expression. Previous studies from our laboratory have shown that like erythroid cells, RPE cells express α, β and γ-globin and produc  ...[more]

Similar Datasets

| S-EPMC6748328 | biostudies-literature
| S-EPMC7139600 | biostudies-literature
| S-EPMC7055119 | biostudies-literature
| S-EPMC3702301 | biostudies-literature
| S-EPMC4250171 | biostudies-literature
| S-EPMC9486127 | biostudies-literature
| S-EPMC4250206 | biostudies-other
| S-EPMC2672506 | biostudies-literature
| S-EPMC6760193 | biostudies-literature
| S-EPMC2148418 | biostudies-literature