Unknown

Dataset Information

0

Epigenetic Inactivation of SOX30 Is Associated with Male Infertility and Offers a Therapy Target for Non-obstructive Azoospermia.


ABSTRACT: Non-obstructive azoospermia (NOA) is the most severe form of male infertility. However, the etiology of NOA is largely unknown, resulting in a lack of clinical treatments. Here, we performed a comparative genome-wide profiling of DNA methylation and identified SOX30 as the most notably hyper-methylated gene at promoter in testicular tissues from NOA patients. This hyper-methylation at promoter of SOX30 directly causes its silencing of expression in NOA. The reduced levels of SOX30 expression are correlated with severity of NOA disease. Deletion of Sox30 in mice uniquely impairs testis development and spermatogenesis with complete absence of spermatozoa in testes leading to male infertility, but does not influence ovary development and female fertility. The pathology and testicular size of Sox30 null mice highly simulate those of NOA patients. Re-expression of Sox30 in Sox30 null mice at adult age reverses the pathological damage of testis and restores the spermatogenesis. The re-presented spermatozoa after re-expression of Sox30 in Sox30 null mice have the ability to start a pregnancy. Moreover, the male offspring of Sox30 re-expression Sox30 null mice still can father children, and these male offspring and their children can live normally more than 1 year without significant difference of physical appearance compared with wild-type mice. In summary, methylated inactivation of SOX30 uniquely impairs spermatogenesis, probably causing NOA disease, and re-expression of SOX30 can successfully restore the spermatogenesis and actual fertility. This study advances our understanding of the pathogenesis of NOA, offering a promising therapy target for NOA disease.

SUBMITTER: Han F 

PROVIDER: S-EPMC6926170 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Epigenetic Inactivation of SOX30 Is Associated with Male Infertility and Offers a Therapy Target for Non-obstructive Azoospermia.

Han Fei F   Jiang Xiao X   Li Zhi-Ming ZM   Zhuang Xuan X   Zhang Xi X   Ouyang Wei-Ming WM   Liu Wen-Bin WB   Mao Cheng-Yi CY   Chen Qing Q   Huang Chuan-Shu CS   Gao Fei F   Cui Zhi-Hong ZH   Ao Lin L   Li Yan-Feng YF   Cao Jia J   Liu Jin-Yi JY  

Molecular therapy. Nucleic acids 20191114


Non-obstructive azoospermia (NOA) is the most severe form of male infertility. However, the etiology of NOA is largely unknown, resulting in a lack of clinical treatments. Here, we performed a comparative genome-wide profiling of DNA methylation and identified SOX30 as the most notably hyper-methylated gene at promoter in testicular tissues from NOA patients. This hyper-methylation at promoter of SOX30 directly causes its silencing of expression in NOA. The reduced levels of SOX30 expression are  ...[more]

Similar Datasets

| S-EPMC8976310 | biostudies-literature
| S-EPMC8383409 | biostudies-literature
| S-EPMC7791528 | biostudies-literature
| S-EPMC4839444 | biostudies-literature
| S-EPMC10107928 | biostudies-literature
2023-10-11 | GSE227497 | GEO
| S-EPMC7759119 | biostudies-literature
| S-EPMC9666961 | biostudies-literature
| S-EPMC8244321 | biostudies-literature
| S-EPMC5732304 | biostudies-literature