Unknown

Dataset Information

0

Lower Body Kinematics Monitoring in Running Using Fabric-Based Wearable Sensors and Deep Convolutional Neural Networks.


ABSTRACT: Continuous kinematic monitoring of runners is crucial to inform runners of inappropriate running habits. Motion capture systems are the gold standard for gait analysis, but they are spatially limited to laboratories. Recently, wearable sensors have gained attention as an unobtrusive method to analyze performance metrics and the health conditions of runners. In this study, we developed a system capable of estimating joint angles in sagittal, frontal, and transverse planes during running. A prototype with fiber strain sensors was fabricated. The positions of the sensors on the pelvis were optimized using a genetic algorithm. A cohort of ten people completed 15 min of running at five different speeds for gait analysis by our prototype device. The joint angles were estimated by a deep convolutional neural network in inter- and intra-participant scenarios. In intra-participant tests, root mean square error (RMSE) and normalized root mean square error (NRMSE) of less than 2.2° and 5.3%, respectively, were obtained for hip, knee, and ankle joints in sagittal, frontal, and transverse planes. The RMSE and NRMSE in inter-participant tests were less than 6.4° and 10%, respectively, in the sagittal plane. The accuracy of this device and methodology could yield potential applications as a soft wearable device for gait monitoring of runners.

SUBMITTER: Gholami M 

PROVIDER: S-EPMC6928687 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Lower Body Kinematics Monitoring in Running Using Fabric-Based Wearable Sensors and Deep Convolutional Neural Networks.

Gholami Mohsen M   Rezaei Ahmad A   Cuthbert Tyler J TJ   Napier Christopher C   Menon Carlo C  

Sensors (Basel, Switzerland) 20191203 23


Continuous kinematic monitoring of runners is crucial to inform runners of inappropriate running habits. Motion capture systems are the gold standard for gait analysis, but they are spatially limited to laboratories. Recently, wearable sensors have gained attention as an unobtrusive method to analyze performance metrics and the health conditions of runners. In this study, we developed a system capable of estimating joint angles in sagittal, frontal, and transverse planes during running. A protot  ...[more]

Similar Datasets

| S-EPMC7769488 | biostudies-literature
| S-EPMC7697594 | biostudies-literature
| S-EPMC7287664 | biostudies-literature
| S-EPMC7506815 | biostudies-literature
| S-EPMC10049990 | biostudies-literature
| S-EPMC6749427 | biostudies-literature
| S-EPMC9091182 | biostudies-literature
| S-EPMC5775419 | biostudies-other
| S-EPMC5426356 | biostudies-literature