Unknown

Dataset Information

0

Cobalt Amide Imidate Imidazolate Frameworks as Highly Active Oxygen Evolution Model Materials.


ABSTRACT: Two imidazolate-based Co-MOFs, IFP-5 and IFP-8 (imidazolate framework Potsdam), with a different peripheral group -R (-Me and -OMe, respectively) have been synthesized by a solvothermal method and tested toward the oxygen evolution reaction (OER). Remarkably, IFP-8 presents much lower overpotentials (319 mV at 10 mA/cm2 and 490 mV at 500 mA/cm2) than IFP-5 toward OER, as confirmed by online gas chromatography measurements (Faradaic yield of O2 > 99%). Moreover, the system is extraordinarily stable during 120 h, even when used as a catalyst toward the overall water splitting reaction without any sign of fatigue. An integrated ex situ spectroscopic study, based on powder X-ray diffraction, extended X-ray absorption fine structure, and attenuated total reflection, allows the identification of the active species and the factors that determine the catalytic activity. Indeed, it was found that the performances are highly affected by the nature of the -R group, because this small change strongly influences the conversion of the initial metal organic framework to the active species. As a consequence, the remarkable activity of IFP-8 can be ascribed to the formation of Co(O)OH phase with a particle size of a few nanometers (3-10 nm) during the electrocatalytic oxygen evolution.

SUBMITTER: Bucci A 

PROVIDER: S-EPMC6931241 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cobalt Amide Imidate Imidazolate Frameworks as Highly Active Oxygen Evolution Model Materials.

Bucci Alberto A   Mondal Suvendu Sekhar SS   Martin-Diaconescu Vlad V   Shafir Alexandr A   Lloret-Fillol Julio J  

ACS applied energy materials 20191119 12


Two imidazolate-based Co-MOFs, IFP-5 and IFP-8 (imidazolate framework Potsdam), with a different peripheral group -R (-Me and -OMe, respectively) have been synthesized by a solvothermal method and tested toward the oxygen evolution reaction (OER). Remarkably, IFP-8 presents much lower overpotentials (319 mV at 10 mA/cm<sup>2</sup> and 490 mV at 500 mA/cm<sup>2</sup>) than IFP-5 toward OER, as confirmed by online gas chromatography measurements (Faradaic yield of O<sub>2</sub> > 99%). Moreover, t  ...[more]

Similar Datasets

| S-EPMC6572389 | biostudies-literature
| S-EPMC5762166 | biostudies-literature
| S-EPMC8495879 | biostudies-literature
| S-EPMC10265085 | biostudies-literature
| S-EPMC2790048 | biostudies-literature
| S-EPMC5644224 | biostudies-literature
| S-EPMC3097175 | biostudies-literature
| S-EPMC6644471 | biostudies-literature
| S-EPMC6839632 | biostudies-literature
| S-EPMC6619243 | biostudies-literature