Simulating Emotions: An Active Inference Model of Emotional State Inference and Emotion Concept Learning.
Ontology highlight
ABSTRACT: The ability to conceptualize and understand one's own affective states and responses - or "Emotional awareness" (EA) - is reduced in multiple psychiatric populations; it is also positively correlated with a range of adaptive cognitive and emotional traits. While a growing body of work has investigated the neurocognitive basis of EA, the neurocomputational processes underlying this ability have received limited attention. Here, we present a formal Active Inference (AI) model of emotion conceptualization that can simulate the neurocomputational (Bayesian) processes associated with learning about emotion concepts and inferring the emotions one is feeling in a given moment. We validate the model and inherent constructs by showing (i) it can successfully acquire a repertoire of emotion concepts in its "childhood", as well as (ii) acquire new emotion concepts in synthetic "adulthood," and (iii) that these learning processes depend on early experiences, environmental stability, and habitual patterns of selective attention. These results offer a proof of principle that cognitive-emotional processes can be modeled formally, and highlight the potential for both theoretical and empirical extensions of this line of research on emotion and emotional disorders.
SUBMITTER: Smith R
PROVIDER: S-EPMC6931387 | biostudies-literature | 2019
REPOSITORIES: biostudies-literature
ACCESS DATA