Unknown

Dataset Information

0

The hemodynamic and atrial electrophysiologic consequences of chronic left atrial volume overload in a controllable canine model.


ABSTRACT: OBJECTIVE:The purpose of this study was to determine the effects of chronic left atrial volume overload on atrial anatomy, hemodynamics, and electrophysiology using a titratable left ventriculoatrial shunt in a canine model. METHODS:Canines (n = 16) underwent implantation of a shunt between the left ventricle and the left atrium. Sham animals (n = 8) underwent a median sternotomy without a shunt. Atrial activation times and effective refractory periods were determined using 250-bipolar epicardial electrodes. Biatrial pressures, systemic pressures, left atrial and left ventricle diameters and volumes, atrial fibrillation inducibility, and durations were recorded at the initial and at 6-month terminal study. RESULTS:Baseline shunt fraction was 46% ± 8%. The left atrial pressure increased from 9.7 ± 3.5 mm Hg to 13.8 ± 4 mm Hg (P < .001). At the terminal study, the left atrial diameter increased from a baseline of 2.9 ± 0.05 cm to 4.1 ± 0.6 cm (P < .001) and left ventricular ejection fraction decreased from 64% ± 1.5% to 54% ± 2.7% (P < .001). Induced atrial fibrillation duration (median, range) was 95 seconds (0-7200) compared with 0 seconds (0-40) in the sham group (P = .02). The total activation time was longer in the shunt group compared with the sham group (72 ± 11 ms vs 62 ± 3 ms, P = .003). The right atrial and not left atrial effective refractory periods were shorter in the shunt compared with the sham group (right atrial effective refractory period: 156 ± 11 ms vs 141 ± 11 ms, P = .005; left atrial effective refractory period: 142 ± 23 ms vs 133 ± 11 ms, P = .35). CONCLUSIONS:This canine model of mitral regurgitation reproduced the mechanical and electrical remodeling seen in clinical mitral regurgitation. Left atrial size increased, with a corresponding decrease in left ventricle systolic function, and an increased atrial activation times, lower effective refractory periods, and increased atrial fibrillation inducibility. This model provides a means to understand the remodeling by which mitral regurgitation causes atrial fibrillation.

SUBMITTER: Ruaengsri C 

PROVIDER: S-EPMC6935371 | biostudies-literature | 2018 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

The hemodynamic and atrial electrophysiologic consequences of chronic left atrial volume overload in a controllable canine model.

Ruaengsri Chawannuch C   Schill Matthew R MR   Lancaster Timothy S TS   Khiabani Ali J AJ   Manghelli Joshua L JL   Carter Daniel I DI   Greenberg Jason W JW   Melby Spencer J SJ   Schuessler Richard B RB   Damiano Ralph J RJ  

The Journal of thoracic and cardiovascular surgery 20180605 5


<h4>Objective</h4>The purpose of this study was to determine the effects of chronic left atrial volume overload on atrial anatomy, hemodynamics, and electrophysiology using a titratable left ventriculoatrial shunt in a canine model.<h4>Methods</h4>Canines (n = 16) underwent implantation of a shunt between the left ventricle and the left atrium. Sham animals (n = 8) underwent a median sternotomy without a shunt. Atrial activation times and effective refractory periods were determined using 250-bi  ...[more]

Similar Datasets

| S-EPMC4595778 | biostudies-literature
| S-EPMC8384875 | biostudies-literature
| S-EPMC4714887 | biostudies-literature
| S-EPMC5115978 | biostudies-literature
| S-EPMC8485788 | biostudies-literature
2022-04-07 | GSE186968 | GEO
| S-EPMC5049755 | biostudies-literature
| S-EPMC9039316 | biostudies-literature
| S-EPMC6812667 | biostudies-literature
| S-EPMC9309441 | biostudies-literature