Project description:Allergic asthma is characterized by airway smooth muscle layer thickening, which is largely attributed to cell division that requires the formation of centrosomes. Centrosomes play a pivotal role in regulating bipolar spindle formation and cell division. Before mitosis, centrosomes undergo maturation characterized by expansion of pericentriolar material proteins, which facilitates spindle formation and mitotic efficiency of many cell types. Although polo-like kinase 1 (Plk1) has been implicated in centrosome maturation, the mechanisms by which Plk1 regulates the cellular process are incompletely elucidated. Here, we identified paxillin as a new Plk1-interacting protein in human airway smooth muscle cells. We unexpectedly found that phosphorylated paxillin (Ser-272) was localized in centrosomes of human smooth muscle cells, which regulated centrosome maturation and spindle assembly. Plk1 knockdown inhibited paxillin Ser-272 phosphorylation, centrosome maturation, and cell division. Furthermore, exposure to allergens enhanced airway smooth muscle layer and paxillin phosphorylation at this residue in mice, which was reduced by smooth muscle conditional knockout of Plk1. These findings suggest that Plk1 regulates centrosome maturation and cell division in part by modulating paxillin phosphorylation on Ser-272. Furthermore, Plk1 contributes to the pathogenesis of allergen-induced thickening of the airway smooth muscle layer by affecting paxillin phosphorylation at this position.
Project description:Thickening of the airway smooth muscle is central to bronchial hyperreactivity. We have shown that the sphingosine analog (R)-2-amino-4-(4-heptyloxyphenyl)-2-methylbutanol (AAL-R) can reverse preestablished airway hyperreactivity in a chronic asthma model. Because sphingosine analogs can be metabolized by SPHK2 (sphingosine kinase 2), we investigated whether this enzyme was required for AAL-R to perturb mechanisms sustaining airway smooth muscle cell proliferation. We found that AAL-R pretreatment reduced the capacity of live airway smooth muscle cells to use oxygen for oxidative phosphorylation and increased lactate dehydrogenase activity. We also determined that SPHK2 was upregulated in airway smooth muscle cells bearing the proliferation marker Ki67 relative to their Ki67-negative counterpart. Comparing different stromal cell subsets of the lung, we found that high SPHK2 concentrations were associated with the ability of AAL-R to inhibit metabolic activity assessed by conversion of the tetrazolium dye MTT. Knockdown or pharmacological inhibition of SPHK2 reversed the effect of AAL-R on MTT conversion, indicating the essential role for this kinase in the metabolic perturbations induced by sphingosine analogs. Our results support the hypothesis that increased SPHK2 levels in proliferating airway smooth muscle cells could be exploited to counteract airway smooth muscle thickening with synthetic substrates.
Project description:Airway smooth muscle (ASM) plays an integral part in the pathophysiology of asthma. It is responsible for acute bronchoconstriction, which is potentiated by constrictor hyperresponsiveness, impaired relaxation and length adaptation. ASM also contributes to airway remodeling and inflammation in asthma. In light of this, ASM is an important target in the treatment of asthma.
Project description:Airway obstruction is a hallmark of allergic asthma and is caused primarily by airway smooth muscle (ASM) hypercontractility. Airway inflammation leads to the release of cytokines that enhance ASM contraction by increasing ras homolog gene family, member A (RhoA) activity. The protective mechanisms that prevent or attenuate the increase in RhoA activity have not been well studied. Here, we report that mice lacking the gene that encodes the protein Milk Fat Globule-EGF factor 8 (Mfge8(-/-)) develop exaggerated airway hyperresponsiveness in experimental models of asthma. Mfge8(-/-) ASM had enhanced contraction after treatment with IL-13, IL-17A, or TNF-?. Recombinant Mfge8 reduced contraction in murine and human ASM treated with IL-13. Mfge8 inhibited IL-13-induced NF-?B activation and induction of RhoA. Mfge8 also inhibited rapid activation of RhoA, an effect that was eliminated by an inactivating point mutation in the RGD integrin-binding site in recombinant Mfge8. Human subjects with asthma had decreased Mfge8 expression in airway biopsies compared with healthy controls. These data indicate that Mfge8 binding to integrin receptors on ASM opposes the effect of allergic inflammation on RhoA activity and identify a pathway for specific inhibition of ASM hypercontractility in asthma.
Project description:Vitamin A deficiency has been shown to exacerbate allergic asthma. Previous studies have postulated that retinoic acid (RA), an active metabolite of vitamin A and high-affinity ligand for RA receptor (RAR), is reduced in airway inflammatory condition and contributes to multiple features of asthma including airway hyperresponsiveness and excessive accumulation of airway smooth muscle (ASM) cells. In this study, we directly quantified RA and examined the molecular basis for reduced RA levels and RA-mediated signaling in lungs and ASM cells obtained from asthmatic donors and in lungs from allergen-challenged mice. Levels of RA and retinol were significantly lower in lung tissues from asthmatic donors and house dust mite (HDM)-challenged mice compared to non-asthmatic human lungs and PBS-challenged mice, respectively. Quantification of mRNA and protein expression revealed dysregulation in the first step of RA biosynthesis consistent with reduced RA including decreased protein expression of retinol dehydrogenase (RDH)-10 and increased protein expression of RDH11 and dehydrogenase/reductase (DHRS)-4 in asthmatic lung. Proteomic profiling of non-asthmatic and asthmatic lungs also showed significant changes in the protein expression of AP-1 targets consistent with increased AP-1 activity. Further, basal RA levels and RA biosynthetic capabilities were decreased in asthmatic human ASM cells. Treatment of human ASM cells with all-trans RA (ATRA) or the RARγ-specific agonist (CD1530) resulted in the inhibition of mitogen-induced cell proliferation and AP-1-dependent transcription. These data suggest that RA metabolism is decreased in asthmatic lung and that enhancing RAR signaling using ATRA or RARγ agonists may mitigate airway remodeling associated with asthma.
Project description:Background: Airway smooth muscle (ASM) remodeling is an important component of the structural changes to airways seen in asthma. Eosinophils are the prominent inflammatory cells in asthma, and there is some evidence that they contribute to ASM remodeling via released mediators and direct contact through integrin-ligand interactions. Eosinophils express several types of outer membrane integrin, which are responsible for cell-cell and cell-extracellular matrix interactions. In our previous study we demonstrated that asthmatic eosinophils show increased adhesion to ASM cells and it may be important factor contributing to ASM remodeling in asthma. According to these findings, in the present study we investigated the effects of suppression of eosinophil integrin on eosinophil-induced ASM remodeling in asthma. Materials and Methods: Individual combined cell cultures of immortalized human ASM cells and eosinophils from peripheral blood of 22 asthmatic patients and 17 healthy controls were prepared. Eosinophil adhesion was evaluated using eosinophil peroxidase activity assay. Genes expression levels in ASM cells and eosinophils were measured using quantitative real-time PCR. ASM cell proliferation was measured using alamarBlue® solution. Eosinophil integrins were blocked by incubating with Arg-Gly-Asp-Ser peptide. Results: Eosinophils from the asthma group showed increased outer membrane α4β1 and αMβ2 integrin expression, increased adhesion to ASM cells, and overexpression of TGF-β1 compared with eosinophils from the healthy control group. Blockade of eosinophil RGD-binding integrins by Arg-Gly-Asp-Ser peptide significantly reduced adhesion of eosinophils to ASM cells in both groups. Integrin-blocking decreased the effects of eosinophils on TGF-β1, WNT-5a, and extracellular matrix protein gene expression in ASM cells and ASM cell proliferation in both groups. These effects were more pronounced in the asthma group compared with the control group. Conclusion: Suppression of eosinophil-ASM interaction via RGD-binding integrins attenuates eosinophil-induced ASM remodeling in asthma. Trial Registration: ClinicalTrials.gov Identifier: NCT02648074.
Project description:In addition to hyperresponsiveness in asthma, airway smooth muscle (ASM) also manifests an inflammatory phenotype characterized by augmented expression of mediators that enhance inflammation, contribute to tissue remodelling and augment leucocyte trafficking and activity. Our present review summarizes contemporary understanding of ASM-derived mediators and their paracrine and autocrine actions in airway diseases.
Project description:In asthma, excessive bronchial narrowing associated with thickening of the airway smooth muscle (ASM) causes respiratory distress. Numerous pharmacological agents prevent experimental airway hyperresponsiveness (AHR) when delivered prophylactically. However, most fail to resolve this feature after disease is instated. Although sphingosine analogs are primarily perceived as immune modulators with the ability to prevent experimental asthma, they also influence processes associated with tissue atrophy, supporting the hypothesis that they could interfere with mechanisms sustaining pre-established AHR. We thus assessed the ability of a sphingosine analog (AAL-R) to reverse AHR in a chronic model of asthma. We dissected the pharmacological mechanism of this class of agents using the non-phosphorylatable chiral isomer AAL-S and the pre-phosphorylated form of AAL-R (AFD-R) in vivo and in human ASM cells. We found that a therapeutic course of AAL-R reversed experimental AHR in the methacholine challenge test, which was not replicated by dexamethasone or the non-phosphorylatable isomer AAL-S. AAL-R efficiently interfered with ASM cell proliferation in vitro, supporting the concept that immunomodulation is not necessary to interfere with cellular mechanisms sustaining AHR. Moreover, the sphingosine-1-phosphate lyase inhibitor SM4 and the sphingosine-1-phosphate receptor antagonist VPC23019 failed to inhibit proliferation, indicating that intracellular accumulation of sphingosine-1-phosphate or interference with cell surface S1P1/S1P3 activation, are not sufficient to induce cytostasis. Potent AAL-R-induced cytostasis specifically related to its ability to induce intracellular AFD-R accumulation. Thus, a sphingosine analog that possesses the ability to be phosphorylated in situ interferes with cellular mechanisms that beget AHR.
Project description:Accumulating evidence indicates that thrombin, the major effector of the coagulation cascade, plays an important role in the pathogenesis of asthma. Interestingly, dabigatran, a drug used in clinical anticoagulation, directly inhibits thrombin activity. The aim of this study was to investigate the effects and mechanisms of dabigatran on airway smooth muscle remodeling in vivo and in vitro. Here, we found that dabigatran attenuated inflammatory pathology, mucus production, and collagen deposition in the lungs of asthmatic mice. Additionally, dabigatran suppressed Yes-associated protein (YAP) activation in airway smooth muscle of asthmatic mice. In human airway smooth muscle cells (HASMCs), dabigatran not only alleviated thrombin-induced proliferation, migration and up-regulation of collagen I, ?-SMA, CTGF and cyclin D1, but also inhibited thrombin-induced YAP activation, while YAP activation mediated thrombin-induced HASMCs remodeling. Mechanistically, thrombin promoted actin stress fibre polymerization through the PAR1/RhoA/ROCK/MLC2 axis to activate YAP and then interacted with SMAD2 in the nucleus to induce downstream target genes, ultimately aggravating HASMCs remodeling. Our study provides experimental evidence that dabigatran ameliorates airway smooth muscle remodeling in asthma by inhibiting YAP signalling, and dabigatran may have therapeutic potential for the treatment of asthma.