Unknown

Dataset Information

0

Flavanol Polymerization Is a Superior Predictor of ?-Glucosidase Inhibitory Activity Compared to Flavanol or Total Polyphenol Concentrations in Cocoas Prepared by Variations in Controlled Fermentation and Roasting of the Same Raw Cocoa Beans.


ABSTRACT: Raw cocoa beans were processed to produce cocoa powders with different combinations of fermentation (unfermented, cool, or hot) and roasting (not roasted, cool, or hot). Cocoa powder extracts were characterized and assessed for ?-glucosidase inhibitory activity in vitro. Cocoa processing (fermentation/roasting) contributed to significant losses of native flavanols. All of the treatments dose-dependently inhibited ?-glucosidase activity, with cool fermented/cool roasted powder exhibiting the greatest potency (IC50: 68.09 µg/mL), when compared to acarbose (IC50: 133.22 µg/mL). A strong negative correlation was observed between flavanol mDP and IC50, suggesting flavanol polymerization as a marker of enhanced ?-glucosidase inhibition in cocoa. Our data demonstrate that cocoa powders are potent inhibitors of ?-glucosidase. Significant reductions in the total polyphenol and flavanol concentrations induced by processing do not necessarily dictate a reduced capacity for ?-glucosidase inhibition, but rather these steps can enhance cocoa bioactivity. Non-traditional compositional markers may be better predictors of enzyme inhibitory activity than cocoa native flavanols.

SUBMITTER: Racine KC 

PROVIDER: S-EPMC6943598 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Flavanol Polymerization Is a Superior Predictor of α-Glucosidase Inhibitory Activity Compared to Flavanol or Total Polyphenol Concentrations in Cocoas Prepared by Variations in Controlled Fermentation and Roasting of the Same Raw Cocoa Beans.

Racine Kathryn C KC   Wiersema Brian D BD   Griffin Laura E LE   Essenmacher Lauren A LA   Lee Andrew H AH   Hopfer Helene H   Lambert Joshua D JD   Stewart Amanda C AC   Neilson Andrew P AP  

Antioxidants (Basel, Switzerland) 20191211 12


Raw cocoa beans were processed to produce cocoa powders with different combinations of fermentation (unfermented, cool, or hot) and roasting (not roasted, cool, or hot). Cocoa powder extracts were characterized and assessed for α-glucosidase inhibitory activity in vitro. Cocoa processing (fermentation/roasting) contributed to significant losses of native flavanols. All of the treatments dose-dependently inhibited α-glucosidase activity, with cool fermented/cool roasted powder exhibiting the grea  ...[more]

Similar Datasets

| S-EPMC7346217 | biostudies-literature
| S-EPMC7231058 | biostudies-literature
| S-EPMC5914545 | biostudies-literature
| S-EPMC5868974 | biostudies-literature
| S-EPMC9405215 | biostudies-literature
| S-EPMC6297061 | biostudies-literature
| S-EPMC6484946 | biostudies-literature
| S-EPMC11342359 | biostudies-literature
| S-EPMC11311213 | biostudies-literature
| S-EPMC6838416 | biostudies-literature