Unknown

Dataset Information

0

A Photoelectric-Stimulated MoS2 Transistor for Neuromorphic Engineering.


ABSTRACT: The von Neumann bottleneck has spawned the rapid expansion of neuromorphic engineering and brain-like networks. Synapses serve as bridges for information transmission and connection in the biological nervous system. The direct implementation of neural networks may depend on novel materials and devices that mimic natural neuronal and synaptic behavior. By exploiting the interfacial effects between MoS2 and AlOx, we demonstrate that an h-BN-encapsulated MoS2 artificial synapse transistor can mimic the basic synaptic behaviors, including EPSC, PPF, LTP, and LTD. Efficient optoelectronic spikes enable simulation of synaptic gain, frequency, and weight plasticity. The Pavlov classical conditioning experiment was successfully simulated by electrical tuning, showing associated learning behavior. In addition, h-BN encapsulation effectively improves the environmental time stability of our devices. Our h-BN-encapsulated MoS2 artificial synapse provides a new paradigm for hardware implementation of neuromorphic engineering.

SUBMITTER: Wang S 

PROVIDER: S-EPMC6946262 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Photoelectric-Stimulated MoS<sub>2</sub> Transistor for Neuromorphic Engineering.

Wang Shuiyuan S   Hou Xiang X   Liu Lan L   Li Jingyu J   Shan Yuwei Y   Wu Shiwei S   Zhang David Wei DW   Zhou Peng P  

Research (Washington, D.C.) 20191111


The von Neumann bottleneck has spawned the rapid expansion of neuromorphic engineering and brain-like networks. Synapses serve as bridges for information transmission and connection in the biological nervous system. The direct implementation of neural networks may depend on novel materials and devices that mimic natural neuronal and synaptic behavior. By exploiting the interfacial effects between MoS<sub>2</sub> and AlOx, we demonstrate that an h-BN-encapsulated MoS<sub>2</sub> artificial synaps  ...[more]

Similar Datasets

| S-EPMC7403303 | biostudies-literature
| S-EPMC7895328 | biostudies-literature
| S-EPMC6821695 | biostudies-literature
| S-EPMC5917918 | biostudies-literature
| S-EPMC6446606 | biostudies-literature