Unknown

Dataset Information

0

Interfacial Energy Level Tuning for Efficient and Thermostable CsPbI2Br Perovskite Solar Cells.


ABSTRACT: Inorganic mixed-halide CsPbX3-based perovskite solar cells (PeSCs) are emerging as one of the most promising types of PeSCs on account of their thermostability compared to organic-inorganic hybrid counterparts. However, dissatisfactory device performance and high processing temperature impede their development for viable applications. Herein, a facile route is presented for tuning the energy levels and electrical properties of sol-gel-derived ZnO electron transport material (ETM) via the doping of a classical alkali metal carbonate Cs2CO3. Compared to bare ZnO, Cs2CO3-doped ZnO possesses more favorable interface energetics in contact with the CsPbI2Br perovskite layer, which can reduce the ohmic loss to a negligible level. The optimized PeSCs achieve an improved open-circuit voltage of 1.28 V, together with an increase in fill factor and short-circuit current. The optimized power conversion efficiencies of 16.42% and 14.82% are realized on rigid glass substrate and flexible plastic substrate, respectively. A high thermostability can be simultaneously obtained via defect passivation at the Cs2CO3-doped ZnO/CsPbI2Br interface, and 81% of the initial efficiency is retained after aging for 200 h at 85 °C.

SUBMITTER: Shen EC 

PROVIDER: S-EPMC6947708 | biostudies-literature | 2020 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Interfacial Energy Level Tuning for Efficient and Thermostable CsPbI<sub>2</sub>Br Perovskite Solar Cells.

Shen En-Chi EC   Chen Jing-De JD   Tian Yu Y   Luo Yu-Xin YX   Shen Yang Y   Sun Qi Q   Jin Teng-Yu TY   Shi Guo-Zheng GZ   Li Yan-Qing YQ   Tang Jian-Xin JX  

Advanced science (Weinheim, Baden-Wurttemberg, Germany) 20190930 1


Inorganic mixed-halide CsPbX<sub>3</sub>-based perovskite solar cells (PeSCs) are emerging as one of the most promising types of PeSCs on account of their thermostability compared to organic-inorganic hybrid counterparts. However, dissatisfactory device performance and high processing temperature impede their development for viable applications. Herein, a facile route is presented for tuning the energy levels and electrical properties of sol-gel-derived ZnO electron transport material (ETM) via  ...[more]

Similar Datasets

| S-EPMC8635431 | biostudies-literature
| S-EPMC7817685 | biostudies-literature
| S-EPMC6785549 | biostudies-literature
| S-EPMC9072107 | biostudies-literature
| S-EPMC5538756 | biostudies-literature
| S-EPMC6992903 | biostudies-literature
| S-EPMC8568940 | biostudies-literature
| S-EPMC5522453 | biostudies-literature
| S-EPMC6614363 | biostudies-literature
| S-EPMC6839631 | biostudies-literature