Project description:Inverted perovskite solar cells (PSCs) incorporating poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT) as the hole transport/extraction layer have been broadly investigated in recent years. However, most PSCs which incorporate PEDOT as the hole transport layer (HTL) suffer from lower device performance stemming from reduced photocurrent and low open-circuit voltage around 0.95 V. Here, we report an ultrathin PEDOT layer as the HTL for efficient inverted structure PSCs. The transparency, conductivity, and resulting film morphology were studied and compared with traditional architectures and thicker PEDOT layers. The PSC device incorporating an ultrathin PEDOT layer shows significant improvement in short-circuit current density (J SC), open-circuit voltage (V OC), and power conversion efficiency. Because ultrathin PEDOT layers can be easily obtained by dilution, this study suggests a simple way to improve the PSC performance and provide a route to further reduce the fabrication complexity and cost of PSCs.
Project description:Charged defects at the surface of the organic-inorganic perovskite active layer are detrimental to solar cells due to exacerbated charge carrier recombination. Here we show that charged surface defects can be benign after passivation and further exploited for reconfiguration of interfacial energy band structure. Based on the electrostatic interaction between oppositely charged ions, Lewis-acid-featured fullerene skeleton after iodide ionization (PCBB-3N-3I) not only efficiently passivates positively charged surface defects but also assembles on top of the perovskite active layer with preferred orientation. Consequently, PCBB-3N-3I with a strong molecular electric dipole forms a dipole interlayer to reconfigure interfacial energy band structure, leading to enhanced built-in potential and charge collection. As a result, inverted structure planar heterojunction perovskite solar cells exhibit the promising power conversion efficiency of 21.1% and robust ambient stability. This work opens up a new window to boost perovskite solar cells via rational exploitation of charged defects beyond passivation.
Project description:Inorganic mixed-halide CsPbX3-based perovskite solar cells (PeSCs) are emerging as one of the most promising types of PeSCs on account of their thermostability compared to organic-inorganic hybrid counterparts. However, dissatisfactory device performance and high processing temperature impede their development for viable applications. Herein, a facile route is presented for tuning the energy levels and electrical properties of sol-gel-derived ZnO electron transport material (ETM) via the doping of a classical alkali metal carbonate Cs2CO3. Compared to bare ZnO, Cs2CO3-doped ZnO possesses more favorable interface energetics in contact with the CsPbI2Br perovskite layer, which can reduce the ohmic loss to a negligible level. The optimized PeSCs achieve an improved open-circuit voltage of 1.28 V, together with an increase in fill factor and short-circuit current. The optimized power conversion efficiencies of 16.42% and 14.82% are realized on rigid glass substrate and flexible plastic substrate, respectively. A high thermostability can be simultaneously obtained via defect passivation at the Cs2CO3-doped ZnO/CsPbI2Br interface, and 81% of the initial efficiency is retained after aging for 200 h at 85 °C.
Project description:All-inorganic CsPbI3 perovskite quantum dots have received substantial research interest for photovoltaic applications because of higher efficiency compared to solar cells using other quantum dots materials and the various exciting properties that perovskites have to offer. These quantum dot devices also exhibit good mechanical stability amongst various thin-film photovoltaic technologies. We demonstrate higher mechanical endurance of quantum dot films compared to bulk thin film and highlight the importance of further research on high-performance and flexible optoelectronic devices using nanoscale grains as an advantage. Specifically, we develop a hybrid interfacial architecture consisting of CsPbI3 quantum dot/PCBM heterojunction, enabling an energy cascade for efficient charge transfer and mechanical adhesion. The champion CsPbI3 quantum dot solar cell has an efficiency of 15.1% (stabilized power output of 14.61%), which is among the highest report to date. Building on this strategy, we further demonstrate a highest efficiency of 12.3% in flexible quantum dot photovoltaics.
Project description:We explore the degradation behaviour under continuous illumination and direct oxygen exposure of inverted unencapsulated formamidinium(FA)0.83Cs0.17Pb(I0.8Br0.2)3, CH3NH3PbI3, and CH3NH3PbI3-xClx perovskite solar cells. We continuously test the devices in-situ and in-operando with current-voltage sweeps, transient photocurrent, and transient photovoltage measurements, and find that degradation in the CH3NH3PbI3-xClx solar cells due to oxygen exposure occurs over shorter timescales than FA0.83Cs0.17Pb(I0.8Br0.2)3 mixed-cation devices. We attribute these oxygen-induced losses in the power conversion efficiencies to the formation of electron traps within the perovskite photoactive layer. Our results highlight that the formamidinium-caesium mixed-cation perovskites are much less sensitive to oxygen-induced degradation than the methylammonium-based perovskite cells, and that further improvements in perovskite solar cell stability should focus on the mitigation of trap generation during ageing.
Project description:As the most promising material for thin-film solar cells nowadays, perovskite shine for its unique optical and electronic properties. Perovskite-based solar cells have already been demonstrated with high efficiencies. However, it is still very challenging to optimize the morphology of perovskite film. In this paper we proposed a smooth and continuous perovskite active layer by treating the poly (3, 4-ethylenedioxythiophene): poly (styrenesulphonate) (PEDOT:PSS) with pre-perovskite deposition and dimethylsulfoxide (DMSO) rinse. The scanning electron microscope (SEM) and atomic force microscope (AFM) images confirmed a perovskite active layer consisting of large crystal grains with less grain boundary area and enhanced crystallinity. The perovskite devices fabricated by this method feature a high power conversion efficiency (PCE) of 11.36% and a short-circuit current (Jsc) of 21.9 mAcm-2.
Project description:The upscaling of perovskite solar cells is one of the challenges that must be addressed to pave the way toward the commercial development of this technology. As for other thin-film photovoltaic technologies, upscaling requires the fabrication of modules composed of series-connected cells. In this work we demonstrate for the first time the interconnection of inverted modules with NiOx using a UV ns laser, obtaining a 10.2 cm2 minimodule with a 15.9% efficiency on the active area, the highest for a NiOx based perovskite module. We use optical microscopy, energy-dispersive X-ray spectroscopy, and transfer length measurement to optimize the interconnection. The results are implemented in a complete electrical simulation of the cell-to-module losses to evaluate the experimental results and to provide an outlook on further development of single junction and multijunction perovskite modules.
Project description:In this data article, we present the influences of the solvent, concentration, and spin rates of 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene) (ITIC) material on the performances of perovskite solar cells (PSCs). The device parameters such as open-circuit voltage (Voc), short circuit current (Jsc), fill factor (FF), and power conversion efficiency (PCE) were measured with Keithley 2400 source meter unit under 100 mW/cm2 (AM 1.5 G). The data in this article describe the optimization of ITIC-based PSCs and are directly related to our research article "Non-fullerene-based small molecules as an efficient n-type electron transporting layers in inverted organic-inorganic halide perovskite solar cells" (Noh et al., Submitted for publication) [1].
Project description:Inorganic hole-transporting materials (HTMs) for stable and cheap inverted perovskite-based solar cells are highly desired. In this context, NiOx, with low synthesis temperature, has been employed. However, the low conductivity and the large number of defects limit the boost of the efficiency. An approach to improve the conductivity is metal doping. In this work, we have synthesized cobalt-doped NiOx nanoparticles containing 0.75, 1, 1.25, 2.5, and 5 mol% cobalt (Co) ions to be used for the inverted planar perovskite solar cells. The best efficiency of the devices utilizing the low temperature-deposited Co-doped NiOx HTM obtained a champion photoconversion efficiency of 16.42%, with 0.75 mol% of doping. Interestingly, we demonstrated that the improvement is not from an increase of the conductivity of the NiOx film, but due to the improvement of the perovskite layer morphology. We observe that the Co-doping raises the interfacial recombination of the device but more importantly improves the perovskite morphology, enlarging grain size and reducing the density of bulk defects and the bulk recombination. In the case of 0.75 mol% of doping, the beneficial effects do not just compensate for the deleterious one but increase performance further. Therefore, 0.75 mol% Co doping results in a significant improvement in the performance of NiOx-based inverted planar perovskite solar cells, and represents a good compromise to synthesize, and deposit, the inorganic material at low temperature, without losing the performance, due to the strong impact on the structural properties of the perovskite. This work highlights the importance of the interface from two different points of view, electrical and structural, recognizing the role of a low doping Co concentration, as a key to improve the inverted perovskite-based solar cells' performance.
Project description:This work reports on incorporation of spectrally tuned gold/silica (Au/SiO2) core/shell nanospheres and nanorods into the inverted perovskite solar cells (PVSC). The band gap of hybrid lead halide iodide (CH3NH3PbI3) can be gradually increased by replacing iodide with increasing amounts of bromide, which can not only offer an appreciate solar radiation window for the surface plasmon resonance effect utilization, but also potentially result in a large open circuit voltage. The introduction of localized surface plasmons in CH3NH3PbI2.85Br0.15-based photovoltaic system, which occur in response to electromagnetic radiation, has shown dramatic enhancement of exciton dissociation. The synchronized improvement in photovoltage and photocurrent leads to an inverted CH3NH3PbI2.85Br0.15 planar PVSC device with power conversion efficiency of 13.7%. The spectral response characterization, time resolved photoluminescence, and transient photovoltage decay measurements highlight the efficient and simple method for perovskite devices.