Unknown

Dataset Information

0

Formononetin attenuates atherosclerosis via regulating interaction between KLF4 and SRA in apoE-/- mice.


ABSTRACT: Background and Purpose: Atherosclerosis is an underlying cause of coronary heart disease. Foam cell, a hallmark of atherosclerosis, is prominently derived from monocyte-differentiated macrophage, and vascular smooth muscle cells (VSMCs) through unlimitedly phagocytizing oxidized low-density lipoprotein (oxLDL). Therefore, the inhibition of monocyte adhesion to endothelium and uptake of oxLDL might be a breakthrough point for retarding atherosclerosis. Formononetin, an isoflavone extracted from Astragalus membranaceus, has exhibited multiple inhibitory effects on proatherogenic factors, such as obesity, dyslipidemia, and inflammation in different animal models. However, its effect on atherosclerosis remains unknown. In this study, we determined if formononetin can inhibit atherosclerosis and elucidated the underlying molecular mechanisms. Methods: ApoE deficient mice were treated with formononetin contained in high-fat diet for 16 weeks. After treatment, mouse aorta, macrophage and serum samples were collected to determine lesions, immune cell profile, lipid profile and expression of related molecules. Concurrently, we investigated the effect of formononetin on monocyte adhesion, foam cell formation, endothelial activation, and macrophage polarization in vitro and in vivo. Results: Formononetin reduced en face and aortic root sinus lesions size. Formononetin enhanced lesion stability by changing the composition of plaque. VSMC- and macrophage-derived foam cell formation and its accumulation in arterial wall were attenuated by formononetin, which might be attributed to decreased SRA expression and reduced monocyte adhesion. Formononetin inhibited atherogenic monocyte adhesion and inflammation. KLF4 negatively regulated the expression of SRA at transcriptional and translational level. Conclusions: Our study demonstrate that formononetin can substantially attenuate the development of atherosclerosis via regulation of interplay between KLF4 and SRA, which suggests the formononetin might be a novel therapeutic approach for inhibition of atherosclerosis.

SUBMITTER: Ma C 

PROVIDER: S-EPMC6956811 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Formononetin attenuates atherosclerosis via regulating interaction between KLF4 and SRA in apoE<sup>-/-</sup> mice.

Ma Chuanrui C   Xia Ronglin R   Yang Shu S   Liu Lipei L   Zhang Jing J   Feng Ke K   Shang Yuna Y   Qu Jingtian J   Li Lingwei L   Chen Ning N   Xu Shixin S   Zhang Wenwen W   Mao Jingyuan J   Han Jihong J   Chen Yuanli Y   Yang Xiaoxiao X   Duan Yajun Y   Fan Guanwei G  

Theranostics 20200101 3


<b>Background and Purpose</b>: Atherosclerosis is an underlying cause of coronary heart disease. Foam cell, a hallmark of atherosclerosis, is prominently derived from monocyte-differentiated macrophage, and vascular smooth muscle cells (VSMCs) through unlimitedly phagocytizing oxidized low-density lipoprotein (oxLDL). Therefore, the inhibition of monocyte adhesion to endothelium and uptake of oxLDL might be a breakthrough point for retarding atherosclerosis. Formononetin, an isoflavone extracted  ...[more]

Similar Datasets

| S-EPMC5057233 | biostudies-literature
| S-EPMC10616072 | biostudies-literature
| S-EPMC7468273 | biostudies-literature
| S-EPMC8079692 | biostudies-literature
| S-EPMC7125070 | biostudies-literature
| S-EPMC8576642 | biostudies-literature
| S-EPMC5523766 | biostudies-literature
| S-EPMC8299997 | biostudies-literature
| S-EPMC10141524 | biostudies-literature
| S-EPMC9307802 | biostudies-literature