Unknown

Dataset Information

0

The Anti-Proliferative Activity of the Hybrid TMS-TMF-4f Compound Against Human Cervical Cancer Involves Apoptosis Mediated by STAT3 Inactivation.


ABSTRACT: We previously reported the potential anti-proliferative activity of 3-(5,6,7-trimethoxy-4-oxo-4H-chromen-2-yl)-N-(3,4,5-trimethoxyphenyl) benzamide (TMS-TMF-4f) against human cancer cells; however, the underlying molecular mechanisms have not been investigated. In the present study, TMS-TMF-4f showed the highest cytotoxicity in human cervical cancer cells (HeLa and CaSki) and low cytotoxicity in normal ovarian epithelial cells. Annexin V-FITC and propidium iodide (PI) double staining revealed that TMS-TMF-4f-induced cytotoxicity was caused by the induction of apoptosis in both HeLa and CaSki cervical cancer cells. The compound TMS-TMF-4f enhanced the activation of caspase-3, caspase-8, and caspase-9 and regulated Bcl-2 family proteins, which led to mitochondrial membrane potential (MMP) loss and resulted in the release of cytochrome c and Smac/DIABLO into the cytosol. Also, TMS-TMF-4f suppressed both constitutive and IL-6-inducible levels of phosphorylated STAT3 (p-STAT3) and associated proteins such as Mcl-1, cyclin D1, survivin, and c-Myc in both cervical cancer cells. STAT-3 overexpression completely ameliorated TMS-TMF-4f-induced apoptotic cell death and PARP cleavage. Docking analysis revealed that TMS-TMF-4f could bind to unphosphorylated STAT3 and inhibit its interconversion to the activated form. Notably, intraperitoneal administration of TMS-TMF-4f (5, 10, or 20 mg/kg) decreased tumor growth in a xenograft cervical cancer mouse model, demonstrated by the increase in TUNEL staining and PARP cleavage and the reduction in p-STAT3, Mcl-1, cyclin D1, survivin, and c-Myc expression levels in tumor tissues. Taken together, our results suggest that TMS-TMF-4f may potentially inhibit human cervical tumor growth through the induction of apoptosis via STAT3 suppression.

SUBMITTER: Hong JY 

PROVIDER: S-EPMC6966466 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Anti-Proliferative Activity of the Hybrid TMS-TMF-4f Compound Against Human Cervical Cancer Involves Apoptosis Mediated by STAT3 Inactivation.

Hong Joo Young JY   Chung Kyung-Sook KS   Shin Ji-Sun JS   Lee Jeong-Hun JH   Gil Hyo-Sun HS   Lee Hwi-Ho HH   Choi Eunwoo E   Choi Jung-Hye JH   Hassan Ahmed H E AHE   Lee Yong Sup YS   Lee Kyung-Tae KT  

Cancers 20191203 12


We previously reported the potential anti-proliferative activity of 3-(5,6,7-trimethoxy-4-oxo-4<i>H</i>-chromen-2-yl)-<i>N</i>-(3,4,5-trimethoxyphenyl) benzamide (TMS-TMF-4f) against human cancer cells; however, the underlying molecular mechanisms have not been investigated. In the present study, TMS-TMF-4f showed the highest cytotoxicity in human cervical cancer cells (HeLa and CaSki) and low cytotoxicity in normal ovarian epithelial cells. Annexin V-FITC and propidium iodide (PI) double staini  ...[more]

Similar Datasets

| S-EPMC5479830 | biostudies-other
| S-EPMC2360038 | biostudies-literature
| PRJNA301391 | ENA
2012-01-01 | GSE29242 | GEO
2012-01-01 | E-GEOD-29242 | biostudies-arrayexpress
| S-EPMC5530137 | biostudies-other
| S-EPMC3702291 | biostudies-literature
| S-EPMC5507294 | biostudies-literature
| S-EPMC6936234 | biostudies-literature
| S-EPMC4559249 | biostudies-literature