Unknown

Dataset Information

0

Crystal structure of human LDB1 in complex with SSBP2.


ABSTRACT: The Lim domain binding proteins (LDB1 and LDB2 in human and Chip in Drosophila) play critical roles in cell fate decisions through partnership with multiple Lim-homeobox and Lim-only proteins in diverse developmental systems including cardiogenesis, neurogenesis, and hematopoiesis. In mammalian erythroid cells, LDB1 dimerization supports long-range connections between enhancers and genes involved in erythropoiesis, including the ?-globin genes. Single-stranded DNA binding proteins (SSBPs) interact specifically with the LDB/Chip conserved domain (LCCD) of LDB proteins and stabilize LDBs by preventing their proteasomal degradation, thus promoting their functions in gene regulation. The structural basis for LDB1 self-interaction and interface with SSBPs is unclear. Here we report a crystal structure of the human LDB1/SSBP2 complex at 2.8-Å resolution. The LDB1 dimerization domain (DD) contains an N-terminal nuclear transport factor 2 (NTF2)-like subdomain and a small helix 4-helix 5 subdomain, which together form the LDB1 dimerization interface. The 2 LCCDs in the symmetric LDB1 dimer flank the core DDs, with each LCCD forming extensive interactions with an SSBP2 dimer. The conserved linker between LDB1 DD and LCCD covers a potential ligand-binding pocket of the LDB1 NTF2-like subdomain and may serve as a regulatory site for LDB1 structure and function. Our structural and biochemical data provide a much-anticipated structural basis for understanding how LDB1 and the LDB1/SSBP interactions form the structural core of diverse complexes mediating cell choice decisions and long-range enhancer-promoter interactions.

SUBMITTER: Wang H 

PROVIDER: S-EPMC6969494 | biostudies-literature | 2020 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Crystal structure of human LDB1 in complex with SSBP2.

Wang Hongyang H   Kim Juhyun J   Wang Zhizhi Z   Yan Xiao-Xue XX   Dean Ann A   Xu Wenqing W  

Proceedings of the National Academy of Sciences of the United States of America 20191231 2


The Lim domain binding proteins (LDB1 and LDB2 in human and Chip in <i>Drosophila</i>) play critical roles in cell fate decisions through partnership with multiple Lim-homeobox and Lim-only proteins in diverse developmental systems including cardiogenesis, neurogenesis, and hematopoiesis. In mammalian erythroid cells, LDB1 dimerization supports long-range connections between enhancers and genes involved in erythropoiesis, including the β-globin genes. Single-stranded DNA binding proteins (SSBPs)  ...[more]

Similar Datasets

| S-EPMC2878399 | biostudies-literature
| S-EPMC6423716 | biostudies-literature
| S-EPMC3527713 | biostudies-literature
| S-EPMC1877744 | biostudies-literature
| S-EPMC3497828 | biostudies-literature
| S-EPMC7864929 | biostudies-literature
| S-EPMC3038789 | biostudies-literature
| S-EPMC4434751 | biostudies-literature
| S-EPMC6016478 | biostudies-literature
| S-EPMC7890914 | biostudies-literature