Unknown

Dataset Information

0

Repurposing Dihydropyridines for Treatment of Helicobacter pylori Infection.


ABSTRACT: Antibiotic resistance is a major cause of the increasing failures in the current eradication therapies against Helicobacter pylori. In this scenario, repurposing drugs could be a valuable strategy to fast-track novel antimicrobial agents. In the present study, we analyzed the inhibitory capability of 1,4-dihydropyridine (DHP) antihypertensive drugs on the essential function of the H. pylori response regulator HsrA and investigated both the in vitro antimicrobial activities and the in vivo efficacy of DHP treatments against H. pylori. Six different commercially available and highly prescribed DHP drugs-namely, Nifedipine, Nicardipine, Nisoldipine, Nimodipine, Nitrendipine, and Lercanidipine-noticeably inhibited the DNA binding activity of HsrA and exhibited potent bactericidal activities against both metronidazole- and clarithromycin-resistant strains of H. pylori, with minimal inhibitory concentration (MIC) values in the range of 4 to 32 mg/L. The dynamics of the decline in the bacterial counts at 2 × MIC appeared to be correlated with the lipophilicity of the drugs, suggesting different translocation efficiencies of DHPs across the bacterial membrane. Oral treatments with 100 mg/kg/day of marketed formulations of Nimodipine or Nitrendipine in combination with omeprazole significantly reduced the H. pylori gastric colonization in mice. The results presented here support a novel therapeutic solution for treatment of antibiotic-resistant H. pylori infections.

SUBMITTER: Gonzalez A 

PROVIDER: S-EPMC6969910 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications


Antibiotic resistance is a major cause of the increasing failures in the current eradication therapies against <i>Helicobacter pylori</i>. In this scenario, repurposing drugs could be a valuable strategy to fast-track novel antimicrobial agents. In the present study, we analyzed the inhibitory capability of 1,4-dihydropyridine (DHP) antihypertensive drugs on the essential function of the <i>H. pylori</i> response regulator HsrA and investigated both the in vitro antimicrobial activities and the  ...[more]

Similar Datasets

| S-EPMC6167866 | biostudies-other
| S-EPMC6734621 | biostudies-literature
| S-EPMC5829259 | biostudies-literature
| S-EPMC5546184 | biostudies-other
| S-EPMC7402006 | biostudies-literature
| S-EPMC7055109 | biostudies-literature
| S-EPMC4913327 | biostudies-literature
| S-EPMC7202442 | biostudies-literature
| S-EPMC7049243 | biostudies-literature
2018-11-23 | PXD009583 | Pride