Altitude shapes the environmental drivers of large-scale variation in abundance of a widespread mammal species.
Ontology highlight
ABSTRACT: Aim:Habitat quality and heterogeneity directly influence the distribution and abundance of organisms at different spatial scales. Determining the main environmental factors driving the variation in species abundance is crucial to understand the underlying ecological processes, and this is especially important for widely distributed species living in contrasting environments. However, the responses to environmental variation are usually described at relatively small spatial scales. Here, we studied the variation in abundance of a widely distributed mustelid, the European badger (Meles meles), across France. Location:The whole metropolitan France. Methods:We used (a) direct detections of 9,439 dead and living badgers, from 2006 to 2009, to estimate badger relative abundance in 703 small agricultural regions of metropolitan France and (b) a Bayesian modeling approach to identify the main environmental determinants influencing badger abundance. Results:Despite a continuous distribution of badger in France, we found large variation in badger abundance between regions, explained by environmental factors. Among a set of 13 environmental variables, we demonstrated that badger abundance in lowlands (<400 m a.s.l.) was mostly driven by biotic factors such as potential food resources (earthworm abundance and fruit crops) and forest fragmentation. Conversely, in mountainous areas, abiotic factors (i.e., soil texture and climate) drove the variation in badger relative abundance. Main conclusions:These results underline the importance of mapping the abundance of wildlife species based on environmental suitability and highlight the complexity of drivers influencing species abundance at such large spatial scales. Altitude shaped the environmental drivers (biotic vs. abiotic) that most influenced relative abundance of a widespread species. In the case of badger, such abundance maps are crucial to identify critical areas for species management as this mustelid is a main wild vector of bovine tuberculosis in several countries.
SUBMITTER: Jacquier M
PROVIDER: S-EPMC6972803 | biostudies-literature | 2020 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA