Unknown

Dataset Information

0

Replica exchange molecular dynamics simulation study on the mechanism of desiccation-induced structuralization of an intrinsically disordered peptide as a model of LEA proteins.


ABSTRACT: Group 3 late embryogenesis abundant (G3LEA) proteins, which act as a well-characterized desiccation protectant in anhydrobiotic organisms, are structurally disordered in solution, but they acquire a predominantly α-helical structure during drying. Thus, G3LEA proteins are now accepted as intrinsically disordered proteins (IDPs). Their functional regions involve characteristic 11-mer repeating motifs. In the present study, to elucidate the origin of the IDP property of G3LEA proteins, we applied replica exchange molecular dynamics (REMD) simulation to a model peptide composed of two tandem repeats of an 11-mer motif and its counterpart peptide whose amino acid sequence was randomized with the same amino acid composition as that of the 11-mer motif. REMD simulations were performed for a single α-helical chain of each peptide and its double-bundled strand in a wide water content ranging from 5 to 78.3 wt%. In the latter case, we tested different types of arrangement: 1) the dipole moments of the two helices were parallel or anti-parallel and 2) due to the amphiphilic nature of the α-helix of the 11-mer motif, two types of the side-to-side contact were tested: hydrophilic-hydrophilic facing or hydrophobic-hydrophobic facing. Here, we revealed that the single chain alone exhibits no IDP-like properties, even if it involves the 11-mer motif, and the hydrophilic interaction of the two chains leads to the formation of a left-handed α-helical coiled coil in the dry state. These results support the cytoskeleton hypothesis that has been proposed as a mechanism by which G3LEA proteins work as a desiccation protectant.

SUBMITTER: Nishimoto T 

PROVIDER: S-EPMC6975979 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC10488288 | biostudies-literature
| S-EPMC5987194 | biostudies-literature
| S-EPMC8336759 | biostudies-literature
| S-EPMC3328716 | biostudies-literature
| S-EPMC9074135 | biostudies-literature
| S-EPMC3166336 | biostudies-literature
| S-EPMC1877756 | biostudies-literature
| S-EPMC6563697 | biostudies-literature
| S-EPMC5706729 | biostudies-literature
| S-EPMC6789927 | biostudies-literature