Unknown

Dataset Information

0

In Situ Structure of an Intact Lipopolysaccharide-Bound Bacterial Surface Layer.


ABSTRACT: Most bacterial and all archaeal cells are encapsulated by a paracrystalline, protective, and cell-shape-determining proteinaceous surface layer (S-layer). On Gram-negative bacteria, S-layers are anchored to cells via lipopolysaccharide. Here, we report an electron cryomicroscopy structure of the Caulobacter crescentus S-layer bound to the O-antigen of lipopolysaccharide. Using native mass spectrometry and molecular dynamics simulations, we deduce the length of the O-antigen on cells and show how lipopolysaccharide binding and S-layer assembly is regulated by calcium. Finally, we present a near-atomic resolution in situ structure of the complete S-layer using cellular electron cryotomography, showing S-layer arrangement at the tip of the O-antigen. A complete atomic structure of the S-layer shows the power of cellular tomography for in situ structural biology and sheds light on a very abundant class of self-assembling molecules with important roles in prokaryotic physiology with marked potential for synthetic biology and surface-display applications.

SUBMITTER: von Kugelgen A 

PROVIDER: S-EPMC6978808 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5015094 | biostudies-literature
2021-04-30 | GSE167859 | GEO
| S-EPMC3392120 | biostudies-literature
| S-EPMC2976456 | biostudies-literature
| S-EPMC7610862 | biostudies-literature
| S-EPMC4879539 | biostudies-literature
| S-EPMC3666127 | biostudies-literature
| S-EPMC7962746 | biostudies-literature
| S-EPMC2995306 | biostudies-literature
| S-EPMC2987597 | biostudies-literature