Unknown

Dataset Information

0

ICOS-deficient and ICOS YF mutant mice fail to control Toxoplasma gondii infection of the brain.


ABSTRACT: Resistance to chronic Toxoplasma gondii infection requires ongoing recruitment of T cells to the brain. Thus, the factors that promote, sustain, and regulate the T cell response to the parasite in the brain are of great interest. The costimulatory molecule ICOS (inducible T cell costimulator) has been reported to act largely through the PI3K pathway in T cells, and can play pro-inflammatory or pro-regulatory roles depending on the inflammatory context and T cell type being studied. During infection with T. gondii, ICOS promotes early T cell responses, while in the chronic stage of infection ICOS plays a regulatory role by limiting T cell responses in the brain. We sought to characterize the role of ICOS signaling through PI3K during chronic infection using two models of ICOS deficiency: total ICOS knockout (KO) mice and ICOS YF mice that are unable to activate PI3K signaling. Overall, ICOS KO and ICOS YF mice had similar severe defects in parasite-specific IgG production and parasite control compared to WT mice. Additionally, we observed expanded effector T cell populations and a loss of Treg frequency in the brains of both ICOS KO and ICOS YF mice. When comparing the remaining Treg populations in infected mice, ICOS KO Tregs expressed WT levels of Foxp3 and CD25, while ICOS YF Tregs expressed significantly less Foxp3 and CD25 compared to both WT and ICOS KO mice. Together, these results suggest that PI3K-independent signaling downstream of ICOS plays an important role in Treg stability in the context of chronic inflammation.

SUBMITTER: O'Brien CA 

PROVIDER: S-EPMC6980566 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

ICOS-deficient and ICOS YF mutant mice fail to control Toxoplasma gondii infection of the brain.

O'Brien Carleigh A CA   Harris Tajie H TH  

PloS one 20200124 1


Resistance to chronic Toxoplasma gondii infection requires ongoing recruitment of T cells to the brain. Thus, the factors that promote, sustain, and regulate the T cell response to the parasite in the brain are of great interest. The costimulatory molecule ICOS (inducible T cell costimulator) has been reported to act largely through the PI3K pathway in T cells, and can play pro-inflammatory or pro-regulatory roles depending on the inflammatory context and T cell type being studied. During infect  ...[more]

Similar Datasets

| S-EPMC6401250 | biostudies-literature
| S-EPMC5685635 | biostudies-literature
| S-EPMC1472419 | biostudies-other
| S-EPMC10327641 | biostudies-literature
| S-EPMC6420625 | biostudies-literature
| S-EPMC3318428 | biostudies-literature
| S-EPMC5489627 | biostudies-literature
| S-EPMC4062421 | biostudies-literature
| S-EPMC2669201 | biostudies-literature
| S-EPMC3811780 | biostudies-literature