Project description:Female subfertility is a growing concern, especially in view of an increasing prevalence of polycystic ovary syndrome (PCOS). Assisted reproductive technologies (ART) offer a perspective for pregnancy, but the outcome rate is still suboptimal. The trace elements (TE), copper (Cu), selenium (Se), and zinc (Zn) are essential for fertility and development. We hypothesized that TE concentrations are related to oocyte quality and growth and affect pregnancy outcomes in women undergoing ART. Concentrations of TE were measured by total reflection X-ray fluorescence. Extracellular glutathione peroxidase 3 (GPX3) and selenoprotein P (SELENOP) were determined as additional Se biomarkers. Corresponding serum and follicular fluid (FF) samples were available from women with (n = 20) and without (n = 20) PCOS diagnosis undergoing hormone treatment within the ART procedure, respectively, and FF samples were classified into five groups based on morphological assessment. Serum showed higher TE concentrations than FF, and TE levels correlated positively between both matrices. Individual FF from the same women showed surprisingly high variability in TE concentration, and follicles without oocytes displayed the lowest TE concentrations. Both Se biomarkers GPX3 and SELENOP were present in FF and correlated positively to Se concentrations. Some notable relationships were observed between morphokinetic parameters, TE concentrations, and GPX3 activity. A slightly depressed serum Zn concentration was observed in PCOS. Our results indicate a direct relationship between TE in serum and FF, positive correlations between the three Se biomarkers in FF, and high variability between the FF from the same woman with the lowest TE concentrations in the follicles with the poorest quality. The differences observed in relation to PCOS diagnoses appear relatively minor. Collectively, the data support the notion that TE assessment of follicles may contribute to optimal oocyte selection and subsequently influence ART success.
Project description:To report outcomes associated with the administration of granulocyte colony-stimulating factor (G-CSF) to women with chronic neutropenia during pregnancy.We conducted an observational study of women of childbearing potential with congenital, cyclic, idiopathic, or autoimmune neutropenia enrolled in the Severe Chronic Neutropenia International Registry to determine outcomes of pregnancies, without and with chronic G-CSF therapy, 1999-2014. Treatment decisions were made by the patients' personal physicians. A research nurse conducted telephone interviews of all enrolled U.S. women of childbearing potential using a standard questionnaire. Comparisons used Fisher's exact test analysis and Student's t test.One hundred seven women reported 224 pregnancies, 124 without G-CSF therapy and 100 on chronic G-CSF therapy (median dose 1.0 micrograms/kg per day, range 0.02-8.6 micrograms/kg per day). There were no significant differences in adverse events between the groups considering all pregnancies or individual mothers, for example, spontaneous terminations (all pregnancies: no G-CSF in 27/124, G-CSF in 13/100; P=.11, Fisher's exact test), preterm labors (all pregnancies, no G-CSF in 9/124, G-CSF in 2/100, P=.12). A study with at least 300 per group would be needed to detect a difference in these events with 80% statistical power (?=0.05). Four newborns of mothers with idiopathic or autoimmune neutropenia not on G-CSF (4/101) had life-threatening infections, whereas there were no similar events (0/90) in the treated group, but this difference was also not statistically significant (P=.124). Adverse events in the neonates were similar for the two groups.This observational study showed no significant adverse effects of administration of G-CSF to women with severe chronic neutropenia during pregnancy.III.
Project description:We aimed to investigate the safety of intraperitoneal administration of the combination of fosfomycin, metronidazole, and recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) in patients undergoing appendectomy. We conducted a prospective phase II clinical trial in 14 otherwise healthy men suffering from uncomplicated appendicitis. After appendectomy, the trial treatment was administered intraperitoneally and left in the abdominal cavity. Trial treatment consisted of 4 g fosfomycin, 1 g metronidazole, and 50 µg rhGM-CSF in a total volume of 500 ml. Safety was evaluated through white blood cell count where a toxic effect was predefined. We evaluated harms and adverse events, repeated biochemical markers, vital signs, and length of stay. White blood cell count did not drop below the toxic range. The recorded harms were dizziness, discomfort when breathing deeply, no flatus, and bloating. Adverse events included three patients with diarrhoea after discharge and one patient with a hypotensive episode. No serious adverse events or infectious complications occurred. Intraperitoneal administration of fosfomycin, metronidazole, and rhGM-CSF was safe in otherwise healthy men undergoing laparoscopic appendectomy. There were some possible harms and adverse events but we were unable to assess if they were related to anaesthesia, surgery, or the trial treatment.
Project description:Background Granulocyte colony-stimulating factor (G-CSF) is a member of the CSF family of glycoproteins that regulate the proliferation, differentiation, and mobilization of neutrophils. G-CSF-producing malignant cancers have been reported to occur in various organs and are mostly associated with poor clinical prognosis. Here, we analyzed the structure of the CSF3 gene encoding the G-CSF protein to delineate the mechanism of G-CSF production by the cancer cells. Methodology Two cases of G-CSF-producing urothelial cancers and three cases of G-CSF-nonproducing bladder cancers were enrolled for genetic analysis. Results In one case of G-CSF-producing bladder cancer, six somatic mutations were detected in the 5'- upstream region of the CSF3 gene. No somatic mutations in the CSF3 gene were detected in another case of G-CSF-producing renal pelvic cancer and G-CSF-nonproducing bladder cancers. Copy numbers of the CSF3 gene were not increased in G-CSF-producing urothelial cancers. Conclusions Somatic mutations in the 5'- upstream region of the CSF3 gene may cause G-CSF protein overproduction.
Project description:RUNX1/AML1 is among the most commonly mutated genes in human leukemia. Haploinsufficiency of RUNX1 causes familial platelet disorder with predisposition to myeloid malignancies (FPD/MM). However, the molecular mechanism of FPD/MM remains unknown. Here we show that murine Runx1(+/-) hematopoietic cells are hypersensitive to granulocyte colony-stimulating factor (G-CSF), leading to enhanced expansion and mobilization of stem/progenitor cells and myeloid differentiation block. Upon G-CSF stimulation, Runx1(+/-) cells exhibited a more pronounced phosphorylation of STAT3 as compared with Runx1(+/+) cells, which may be due to reduced expression of Pias3, a key negative regulator of STAT3 signaling, and reduced physical sequestration of STAT3 by RUNX1. Most importantly, blood cells from a FPD patient with RUNX1 mutation exhibited similar G-CSF hypersensitivity. Taken together, Runx1 haploinsufficiency appears to predispose FPD patients to MM by expanding the pool of stem/progenitor cells and blocking myeloid differentiation in response to G-CSF.
Project description:Granulocyte colony stimulating factor (G-CSF) is a cytokine used to treat neutropenia. Different glycosylated and non-glycosylated variants of G-CSF for therapeutic application are currently generated by recombinant expression. Here, we describe our approaches to establish a first semisynthesis strategy to access the aglycone and O-glycoforms of G-CSF, thereby enabling the preparation of selectively and homogeneously post-translationally modified variants of this important cytokine. Eventually, we succeeded by combining selenocysteine ligation of a recombinantly produced N-terminal segment with a synthetic C-terminal part, transiently equipped with a side-chain-linked, photocleavable PEG moiety, at low concentration. The transient PEGylation enabled quantitative enzymatic elongation of the carbohydrate at Thr133. Overall, we were able to significantly reduce the problems related to the low solubility and the tendency to aggregate of the two protein segments, which allowed the preparation of four G-CSF variants that were successfully folded and demonstrated biological activity in cell proliferation assays.