Histopathological Analysis of Rat Hepatotoxicity Based on Macrophage Functions: in Particular, an Analysis for Thioacetamide-induced Hepatic Lesions.
Ontology highlight
ABSTRACT: Hepatic macrophages play an important role in homeostasis. The functional abnormalities of hepatic macrophages primarily or secondarily influence chemically induced hepatotoxicity. However, the evaluation system based on their functions has not yet been established. Recently, a new concept (M1-/M2-macrophage polarization) was proposed; M1-macropahges are induced by INF-?, and show high phagocytosis/tissue damage, whereas M2-macropahges are induced by IL-4 and play roles in reparative fibrosis by releasing IL-10 and TGF-?1. In hepatogenesis, CD68-expressing M1-macrophages predominantly exist in embryos; in neonates, in contrast, CD163-/CD204-expressing M2-macrophages appear along the sinusoids and mature as Kupffer cells. Activated Kupffer cells by liposome decrease AST and ALT values, whereas AST and ALT values are increased under Kupffer cells depleted with clodronate treatment. Since Kupffer cells may be involved in clearance of liver enzymes, macrophage condition should be taken into consideration when hepatotoxicity is analyzed. In TAA-induced acute hepatic lesions, INF-?, TNF-? and IL-6 for M1-factors and IL-4 for M2-factors are already increased before histopathological change; the appearance of CD68-expressing M1-macrophages and CD163-expressing M2-macrophages follows in injured centrilobular lesions, and TGF-?1 and IL-10 are increased for reparative fibrosis. CD68-expressing M1-macrophages co-express MHC class II and Iba-1, whereas CD163-expressing M2-macrophages also express CD204 and Galectin-3. Under macrophage depletion by clodoronate, TAA-treated rat livers show prolonged coagulation necrosis of hepatocytes, and then develop dystrophic calcification without reparative fibrosis. The depletion of hepatic macrophages influences hepatic lesion development. Collectively, a histopathological analysis method for hepatotoxicity according to M1-/M2-macrophage polarization would lead to the refinement of hazard characterization of chemicals in food and feed.
SUBMITTER: Yamate J
PROVIDER: S-EPMC6989168 | biostudies-literature | 2016 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA