Unknown

Dataset Information

0

Stretchable fabric generates electric power from woven thermoelectric fibers.


ABSTRACT: Assembling thermoelectric modules into fabric to harvest energy from body heat could one day power multitudinous wearable electronics. However, the invalid 2D architecture of fabric limits the application in thermoelectrics. Here, we make the valid thermoelectric fabric woven out of thermoelectric fibers producing an unobtrusive working thermoelectric module. Alternately doped carbon nanotube fibers wrapped with acrylic fibers are woven into ?-type thermoelectric modules. Utilizing elasticity originating from interlocked thermoelectric modules, stretchable 3D thermoelectric generators without substrate can be made to enable sufficient alignment with the heat flow direction. The textile generator shows a peak power density of 70?mWm-2 for a temperature difference of 44?K and excellent stretchability (~80% strain) with no output degradation. The compatibility between body movement and sustained power supply is further displayed. The generators described here are true textiles, proving active thermoelectrics can be woven into various fabric architectures for sensing, energy harvesting, or thermal management.

SUBMITTER: Sun T 

PROVIDER: S-EPMC6989526 | biostudies-literature | 2020 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Stretchable fabric generates electric power from woven thermoelectric fibers.

Sun Tingting T   Zhou Beiying B   Zheng Qi Q   Wang Lianjun L   Jiang Wan W   Snyder Gerald Jeffrey GJ  

Nature communications 20200129 1


Assembling thermoelectric modules into fabric to harvest energy from body heat could one day power multitudinous wearable electronics. However, the invalid 2D architecture of fabric limits the application in thermoelectrics. Here, we make the valid thermoelectric fabric woven out of thermoelectric fibers producing an unobtrusive working thermoelectric module. Alternately doped carbon nanotube fibers wrapped with acrylic fibers are woven into π-type thermoelectric modules. Utilizing elasticity or  ...[more]

Similar Datasets

| S-EPMC8363648 | biostudies-literature
| S-EPMC8728843 | biostudies-literature
| S-EPMC7890051 | biostudies-literature
| S-EPMC8624342 | biostudies-literature
| S-EPMC6560123 | biostudies-literature
| S-EPMC5148684 | biostudies-literature
| S-EPMC7693281 | biostudies-literature
| S-EPMC5455922 | biostudies-other
| S-EPMC4372730 | biostudies-literature
| S-EPMC4197474 | biostudies-literature