Unknown

Dataset Information

0

Whole Fabric-Assisted Thermoelectric Devices for Wearable Electronics.


ABSTRACT: Flexible thermoelectric generators (f-TEGs) have demonstrated great potential in wearable self-powered health monitoring devices. However, the existing wearable f-TEGs are neither flexible enough to bend and stretch while maintaining the device's integrity with a good TE performance nor directly compatible with clothes materials. Here, ultraflexible fabric-based thermoelectric generators (uf-TEGs) are proposed with conductive cloth electrodes and elastic fabric substrate. The patterned elastic fabric substrate fits the rigid cuboids well, together with serpentine structured cloth electrodes, rendering uf-TEG with excellent integrity and flexibility, thereby achieving a highly functional TE performance when strain reaches 30% or on arbitrarily shaped heat sources. The uf-TEGs show a large peak power of 64.10 μW for a temperature difference of 33.24 K with a high voltage output of 111.49 mV, which is superior compared to previously reported fabric-based TEG devices, and it is still functional after the water immersion test. Besides the energy harvesting function, with both the temperature sensing ability and the touch perception, this uf-TEG is demonstrated as the electrical skin when mounted on a robot. Moreover, due to the wind-sensitive performance and self-power ability, the uf-TEGs are assembled on cloth as wearable health and motion monitoring devices.

SUBMITTER: Hou Y 

PROVIDER: S-EPMC8728843 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7295994 | biostudies-literature
| S-EPMC7684283 | biostudies-literature
| S-EPMC5526867 | biostudies-other
| S-EPMC8564429 | biostudies-literature
| S-EPMC8302843 | biostudies-literature
| S-EPMC7693281 | biostudies-literature
| S-EPMC6989526 | biostudies-literature
| S-EPMC4896855 | biostudies-literature
| S-EPMC8175338 | biostudies-literature
| S-EPMC6145303 | biostudies-literature