Project description:Peroxisomes are arguably the most biochemically versatile of all eukaryotic organelles. Their metabolic functions vary between different organisms, between different tissue types of the same organism and even between different developmental stages or in response to changed environmental conditions. New functions for peroxisomes are still being discovered and their importance is underscored by the severe phenotypes that can arise as a result of peroxisome dysfunction. The ?-oxidation pathway is central to peroxisomal metabolism, but the substrates processed are very diverse, reflecting the diversity of peroxisomes across species. Substrates for ?-oxidation enter peroxisomes via ATP-binding cassette (ABC) transporters of subfamily D; (ABCD) and are activated by specific acyl CoA synthetases for further metabolism. Humans have three peroxisomal ABCD family members, which are half transporters that homodimerize and have distinct but partially overlapping substrate specificity; Saccharomyces cerevisiae has two half transporters that heterodimerize and plants have a single peroxisomal ABC transporter that is a fused heterodimer and which appears to be the single entry point into peroxisomes for a very wide variety of ?-oxidation substrates. Our studies suggest that the Arabidopsis peroxisomal ABC transporter AtABCD1 accepts acyl CoA substrates, cleaves them before or during transport followed by reactivation by peroxisomal synthetases. We propose that this is a general mechanism to provide specificity to this class of transporters and by which amphipathic compounds are moved across peroxisome membranes.
Project description:All living organisms depend on primary and secondary membrane transport for the supply of external nutrients and removal or sequestration of unwanted (toxic) compounds. Due to the chemical diversity of cellular molecules, it comes as no surprise that a significant part of the proteome is dedicated to the active transport of cargo across the plasma membrane or the membranes of subcellular organelles. Transport against a chemical gradient can be driven by, for example, the free energy change associated with ATP hydrolysis (primary transport), or facilitated by the potential energy of the chemical gradient of another molecule (secondary transport). Primary transporters include the rotary motor ATPases (F-, A-, and V-ATPases), P-type ATPases and a large family of integral membrane proteins referred to as "ABC" (ATP binding cassette) transporters. ABC transporters are widespread in all forms of life and are characterized by two nucleotide-binding domains (NBD) and two transmembrane domains (TMDs). ATP hydrolysis on the NBD drives conformational changes in the TMD, resulting in alternating access from inside and outside of the cell for unidirectional transport across the lipid bilayer. Common to all ABC transporters is a signature sequence or motif, LSGGQ, that is involved in nucleotide binding. Both importing and exporting ABC transporters are found in bacteria, whereas the majority of eukaryotic family members function in the direction of export. Recent progress with the X-ray crystal structure determination of a variety of bacterial and eukaryotic ABC transporters has helped to advance our understanding of the ATP hydrolysis-driven transport mechanism but has also illustrated the large structural and functional diversity within the family.
Project description:Drug delivery into the brain is regulated by the blood-brain interfaces. The blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB), and the blood-arachnoid barrier (BAB) regulate the exchange of substances between the blood and brain parenchyma. These selective barriers present a high impermeability to most substances, with the selective transport of nutrients and transporters preventing the entry and accumulation of possibly toxic molecules, comprising many therapeutic drugs. Transporters of the ATP-binding cassette (ABC) superfamily have an important role in drug delivery, because they extrude a broad molecular diversity of xenobiotics, including several anticancer drugs, preventing their entry into the brain. Gliomas are the most common primary tumors diagnosed in adults, which are often characterized by a poor prognosis, notably in the case of high-grade gliomas. Therapeutic treatments frequently fail due to the difficulty of delivering drugs through the brain barriers, adding to diverse mechanisms developed by the cancer, including the overexpression or expression de novo of ABC transporters in tumoral cells and/or in the endothelial cells forming the blood-brain tumor barrier (BBTB). Many models have been developed to study the phenotype, molecular characteristics, and function of the blood-brain interfaces as well as to evaluate drug permeability into the brain. These include in vitro, in vivo, and in silico models, which together can help us to better understand their implication in drug resistance and to develop new therapeutics or delivery strategies to improve the treatment of pathologies of the central nervous system (CNS). In this review, we present the principal characteristics of the blood-brain interfaces; then, we focus on the ABC transporters present on them and their implication in drug delivery; next, we present some of the most important models used for the study of drug transport; finally, we summarize the implication of ABC transporters in glioma and the BBTB in drug resistance and the strategies to improve the delivery of CNS anticancer drugs.
Project description:ATP-binding cassette (ABC) transporters can translocate a broad spectrum of molecules across the cell membrane including physiological cargo and toxins. ABC transporters are known for the role they play in resistance towards anticancer agents in chemotherapy of cancer patients. There are 68 ABC transporters annotated in the genome of the social amoeba Dictyostelium discoideum. We have characterized more than half of these ABC transporters through a systematic study of mutations in their genes. We have analyzed morphological and transcriptional phenotypes for these mutants during growth and development and found that most of the mutants exhibited rather subtle phenotypes. A few of the genes may share physiological functions, as reflected in their transcriptional phenotypes. Since most of the abc-transporter mutants showed subtle morphological phenotypes, we utilized these transcriptional phenotypes to identify genes that are important for development by looking for transcripts whose abundance was unperturbed in most of the mutants. We found a set of 668 genes that includes many validated D. discoideum developmental genes. We have also found that abcG6 and abcG18 may have potential roles in intercellular signaling during terminal differentiation of spores and stalks.
Project description:Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC) transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells. Inhibition of glycolysis by 3-bromopyruvate (3BrPA) suppressed ATP production in malignant cells, and restored the retention of daunorubicin or mitoxantrone in ABC transporter-expressing, RPMI8226 (ABCG2), KG-1 (ABCB1) and HepG2 cells (ABCB1 and ABCG2). Interestingly, although side population (SP) cells isolated from RPMI8226 cells exhibited higher levels of glycolysis with an increased expression of genes involved in the glycolytic pathway, 3BrPA abolished Hoechst 33342 exclusion in SP cells. 3BrPA also disrupted clonogenic capacity in malignant cell lines including RPMI8226, KG-1, and HepG2. Furthermore, 3BrPA restored cytotoxic effects of daunorubicin and doxorubicin on KG-1 and RPMI8226 cells, and markedly suppressed subcutaneous tumor growth in combination with doxorubicin in RPMI8226-implanted mice. These results collectively suggest that the inhibition of glycolysis is able to overcome drug resistance in ABC transporter-expressing malignant cells through the inactivation of ABC transporters and impairment of SP cells with enhanced glycolysis as well as clonogenic cells.
Project description:ABC transporters form the largest of all transporter families, and their structural study has made tremendous progress over recent years. However, despite such advances, the precise mechanisms that determine the energy-coupling between ATP hydrolysis and the conformational changes following substrate binding remain to be elucidated. Here, we present our thermodynamic analysis for both ABC importers and exporters, and introduce the two new concepts of differential-binding energy and elastic conformational energy into the discussion. We hope that the structural analysis of ABC transporters will henceforth take thermodynamic aspects of transport mechanisms into account as well.
Project description:Drug transporters are integral membrane proteins that play a critical role in drug disposition by affecting absorption, distribution, and excretion. They translocate drugs, as well as endogenous molecules and toxins, across membranes using ATP hydrolysis, or ion/concentration gradients. In general, drug transporters are expressed ubiquitously, but they function in drug disposition by being concentrated in tissues such as the intestine, the kidneys, the liver, and the brain. Based on their primary sequence and their mechanism, transporters can be divided into the ATP-binding cassette (ABC), solute-linked carrier (SLC), and the solute carrier organic anion (SLCO) superfamilies. Many X-ray crystallography and cryo-electron microscopy (cryo-EM) structures have been solved in the ABC and SLC transporter superfamilies or of their bacterial homologs. The structures have provided valuable insight into the structural basis of transport. This chapter will provide particular focus on the promiscuous drug transporters because of their effect on drug disposition and the challenges associated with them.
Project description:ATP-binding cassette (ABC) transporters can translocate a broad spectrum of molecules across the cell membrane including physiological cargo and toxins. ABC transporters are known for the role they play in resistance towards anticancer agents in chemotherapy of cancer patients. There are 68 ABC transporters annotated in the genome of the social amoeba Dictyostelium discoideum. We have characterized more than half of these ABC transporters through a systematic study of mutations in their genes. We have analyzed morphological and transcriptional phenotypes for these mutants during growth and development and found that most of the mutants exhibited rather subtle phenotypes. A few of the genes may share physiological functions, as reflected in their transcriptional phenotypes. Since most of the abc-transporter mutants showed subtle morphological phenotypes, we utilized these transcriptional phenotypes to identify genes that are important for development by looking for transcripts whose abundance was unperturbed in most of the mutants. We found a set of 668 genes that includes many validated D. discoideum developmental genes. We have also found that abcG6 and abcG18 may have potential roles in intercellular signaling during terminal differentiation of spores and stalks. Transcriptional phenotyping during development of abc transporter mutants in Dictyostelium discoideum
Project description:ATP binding cassette (ABC) transporters play a pivotal role in drug elimination, particularly on several types of cancer in which these proteins are overexpressed. Due to their promiscuous ligand recognition, building computational models for substrate classification is quite challenging. This study evaluates the use of modified Self-Organizing Maps (SOM) for predicting drug resistance associated with P-gp, MPR1 and BCRP activity. Herein, we present a novel multi-labelled unsupervised classification model which combines a new clustering algorithm with SOM. It significantly improves the accuracy of substrates classification, catching up with traditional supervised machine learning algorithms. Results can be applied to predict the pharmacological profile of new drug candidates during the drug development process.
Project description:Multi-drug resistance of pathogenic microorganisms is becoming a serious threat, particularly to immunocompromised populations. The high mortality of systematic fungal infections necessitates novel antifungal drugs and therapies. Unfortunately, with traditional drug discovery approaches, only echinocandins was approved by FDA as a new class of antifungals in the past two decades. Drug efflux is one of the major contributors to multi-drug resistance, the modulator of drug efflux pumps is considered as one of the keys to conquer multi-drug resistance. In this study, we combined structure-based virtual screening and whole-cell based mechanism study, identified a natural product, beauvericin (BEA) as a drug efflux pump modulator, which can reverse the multi-drug resistant phenotype of Candida albicans by specifically blocking the ATP-binding cassette (ABC) transporters; meantime, BEA alone has fungicidal activity in vitro by elevating intracellular calcium and reactive oxygen species (ROS). It was further demonstrated by histopathological study that BEA synergizes with a sub-therapeutic dose of ketoconazole (KTC) and could cure the murine model of disseminated candidiasis. Toxicity evaluation of BEA, including acute toxicity test, Ames test, and hERG (human ether-à-go-go-related gene) test promised that BEA can be harnessed for treatment of candidiasis, especially the candidiasis caused by ABC overexpressed multi-drug resistant C. albicans.