Complex multiphase organohydrogels with programmable mechanics toward adaptive soft-matter machines.
Ontology highlight
ABSTRACT: Many biological organisms can tune their mechanical properties to adapt to environments in multistable modes, but the current synthetic materials, with bistable states, have a limited ability to alter mechanical stiffness. Here, we constructed programmable organohydrogels with multistable mechanical states by an on-demand modular assembly of noneutectic phase transition components inside microrganogel inclusions. The resultant multiphase organohydrogel exhibits precisely controllable thermo-induced stepwise switching (i.e., triple, quadruple, and quintuple switching) mechanics and a self-healing property. The organohydrogel was introduced into the design of soft-matter machines, yielding a soft gripper with adaptive grasping through stiffness matching with various objects under pneumatic-thermal hybrid actuation. Meanwhile, a programmable adhesion of octopus-inspired robotic tentacles on a wide range of surface morphologies was realized. These results demonstrated the applicability of these organohydrogels in lifelike soft robotics in unconstructed and human body environments.
SUBMITTER: Zhuo S
PROVIDER: S-EPMC6994219 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA