Cingulo-opercular adaptive control for younger and older adults during a challenging gap detection task.
Ontology highlight
ABSTRACT: Cingulo-opercular activity is hypothesized to reflect an adaptive control function that optimizes task performance through adjustments in attention and behavior, and outcome monitoring. While auditory perceptual task performance appears to benefit from elevated activity in cingulo-opercular regions of frontal cortex before stimuli are presented, this association appears reduced for older adults compared to younger adults. However, adaptive control function may be limited by difficult task conditions for older adults. An fMRI study was used to characterize adaptive control differences while 15 younger (average age = 24 years) and 15 older adults (average age = 68 years) performed a gap detection in noise task designed to limit age-related differences. During the fMRI study, participants listened to a noise recording and indicated with a button-press whether it contained a gap. Stimuli were presented between sparse fMRI scans (TR = 8.6 s) and BOLD measurements were collected during separate listening and behavioral response intervals. Age-related performance differences were limited by presenting gaps in noise with durations calibrated at or above each participant's detection threshold. Cingulo-opercular BOLD increased significantly throughout listening and behavioral response intervals, relative to a resting baseline. Correct behavioral responses were significantly more likely on trials with elevated pre-stimulus cingulo-opercular BOLD, consistent with an adaptive control framework. Cingulo-opercular adaptive control estimates appeared higher for participants with better gap sensitivity and lower response bias, irrespective of age, which suggests that this mechanism can benefit performance across the lifespan under conditions that limit age-related performance differences.
SUBMITTER: Vaden KI
PROVIDER: S-EPMC7000297 | biostudies-literature | 2020 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA