Unknown

Dataset Information

0

The microtubule regulator ringer functions downstream from the RNA repair/splicing pathway to promote axon regeneration.


ABSTRACT: Promoting axon regeneration in the central and peripheral nervous system is of clinical importance in neural injury and neurodegenerative diseases. Both pro- and antiregeneration factors are being identified. We previously reported that the Rtca mediated RNA repair/splicing pathway restricts axon regeneration by inhibiting the nonconventional splicing of Xbp1 mRNA under cellular stress. However, the downstream effectors remain unknown. Here, through transcriptome profiling, we show that the tubulin polymerization-promoting protein (TPPP) ringmaker/ringer is dramatically increased in Rtca-deficient Drosophila sensory neurons, which is dependent on Xbp1. Ringer is expressed in sensory neurons before and after injury, and is cell-autonomously required for axon regeneration. While loss of ringer abolishes the regeneration enhancement in Rtca mutants, its overexpression is sufficient to promote regeneration both in the peripheral and central nervous system. Ringer maintains microtubule stability/dynamics with the microtubule-associated protein futsch/MAP1B, which is also required for axon regeneration. Furthermore, ringer lies downstream from and is negatively regulated by the microtubule-associated deacetylase HDAC6, which functions as a regeneration inhibitor. Taken together, our findings suggest that ringer acts as a hub for microtubule regulators that relays cellular status information, such as cellular stress, to the integrity of microtubules in order to instruct neuroregeneration.

SUBMITTER: Vargas EJM 

PROVIDER: S-EPMC7000917 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

The microtubule regulator <i>ringer</i> functions downstream from the RNA repair/splicing pathway to promote axon regeneration.

Vargas Ernest J Monahan EJM   Matamoros Andrew J AJ   Qiu Jingyun J   Jan Calvin H CH   Wang Qin Q   Gorczyca David D   Han Tina W TW   Weissman Jonathan S JS   Jan Yuh Nung YN   Banerjee Swati S   Song Yuanquan Y  

Genes & development 20200109 3-4


Promoting axon regeneration in the central and peripheral nervous system is of clinical importance in neural injury and neurodegenerative diseases. Both pro- and antiregeneration factors are being identified. We previously reported that the Rtca mediated RNA repair/splicing pathway restricts axon regeneration by inhibiting the nonconventional splicing of <i>Xbp1</i> mRNA under cellular stress. However, the downstream effectors remain unknown. Here, through transcriptome profiling, we show that t  ...[more]

Similar Datasets

| S-EPMC4446171 | biostudies-literature
| S-EPMC4926243 | biostudies-literature
| S-EPMC2693768 | biostudies-other
| S-EPMC4946901 | biostudies-literature
| S-EPMC6310844 | biostudies-literature
| S-EPMC3916952 | biostudies-literature
| S-EPMC3330754 | biostudies-literature
| S-EPMC3477258 | biostudies-literature
| S-EPMC5173288 | biostudies-other
| S-EPMC5823762 | biostudies-literature