A slurry microcosm study on the interaction between antibiotics and soil bacterial community.
Ontology highlight
ABSTRACT: Antibiotics released in the environment have attracted great attention. The environmental emission control of antibiotics should be based on the degree of their negative impacts on the environment and ecology. Here, we conducted a series of soil slurry microcosm experiments to investigate the interactions between antibiotics and the soil bacterial community. In the soil slurry, distinctive behaviors were observed for different antibiotics. Beta-lactams (ampicillin and ceftriaxone) experienced fast biodegradation. Kanamycin was adsorbed on soil particles soon after its addition. Nalidixic acid was stable throughout the experimental period (164 h). The main inactivation mechanism of tetracycline was deduced to be hydrolysis. Bacterial communities in slurries with or without antibiotic-treatment were profiled via high-throughput Illumina sequencing of the 16S rRNA gene. Unstable (ceftriaxone) and adsorbed (kanamycin) antibiotics show minor or negligible influences on the soil bacterial community. Stable antibiotics (nalidixic acid and tetracycline) have significantly affected the structure of the bacterial community. Most of enriched bacterial genera by various antibiotics belong to the same phylum, Proteobacteria. Inhibited bacterial phyla by nalidixic acid are Firmicutes and Bacteroidetes, while those inhibited by tetracycline are Firmicutes, Bacteroidetes and Cyanobacteria. According to the PICRUSt prediction of metagenome, influence of antibiotics on overall metabolic function of the bacterial community is rather limited. This study has provided valuable information, from a phylogenetic viewpoint, about the influence of high concentration of antibiotics on soil bacterial community.
SUBMITTER: Dong X
PROVIDER: S-EPMC7005453 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA