Ontology highlight
ABSTRACT:
SUBMITTER: Sarkizova S
PROVIDER: S-EPMC7008090 | biostudies-literature | 2020 Feb
REPOSITORIES: biostudies-literature
Sarkizova Siranush S Klaeger Susan S Le Phuong M PM Li Letitia W LW Oliveira Giacomo G Keshishian Hasmik H Hartigan Christina R CR Zhang Wandi W Braun David A DA Ligon Keith L KL Bachireddy Pavan P Zervantonakis Ioannis K IK Rosenbluth Jennifer M JM Ouspenskaia Tamara T Law Travis T Justesen Sune S Stevens Jonathan J Lane William J WJ Eisenhaure Thomas T Lan Zhang Guang G Clauser Karl R KR Hacohen Nir N Carr Steven A SA Wu Catherine J CJ Keskin Derin B DB
Nature biotechnology 20191216 2
Prediction of HLA epitopes is important for the development of cancer immunotherapies and vaccines. However, current prediction algorithms have limited predictive power, in part because they were not trained on high-quality epitope datasets covering a broad range of HLA alleles. To enable prediction of endogenous HLA class I-associated peptides across a large fraction of the human population, we used mass spectrometry to profile >185,000 peptides eluted from 95 HLA-A, -B, -C and -G mono-allelic ...[more]