Unknown

Dataset Information

0

Mapping migraine to a common brain network.


ABSTRACT: Inconsistent findings from migraine neuroimaging studies have limited attempts to localize migraine symptomatology. Novel brain network mapping techniques offer a new approach for linking neuroimaging findings to a common neuroanatomical substrate and localizing therapeutic targets. In this study, we attempted to determine whether neuroanatomically heterogeneous neuroimaging findings of migraine localize to a common brain network. We used meta-analytic coordinates of decreased grey matter volume in migraineurs as seed regions to generate resting state functional connectivity network maps from a normative connectome (n = 1000). Network maps were overlapped to identify common regions of connectivity across all coordinates. Specificity of our findings was evaluated using a whole-brain Bayesian spatial generalized linear mixed model and a region of interest analysis with comparison groups of chronic pain and a neurologic control (Alzheimer's disease). We found that all migraine coordinates (11/11, 100%) were negatively connected (t ? ±7, P < 10-6 family-wise error corrected for multiple comparisons) to a single location in left extrastriate visual cortex overlying dorsal V3 and V3A subregions. More than 90% of coordinates (10/11) were also positively connected with bilateral insula and negatively connected with the hypothalamus. Bayesian spatial generalized linear mixed model whole-brain analysis identified left V3/V3A as the area with the most specific connectivity to migraine coordinates compared to control coordinates (voxel-wise probability of ?90%). Post hoc region of interest analyses further supported the specificity of this finding (ANOVA P = 0.02; pairwise t-tests P = 0.03 and P = 0.003, respectively). In conclusion, using coordinate-based network mapping, we show that regions of grey matter volume loss in migraineurs localize to a common brain network defined by connectivity to visual cortex V3/V3A, a region previously implicated in mechanisms of cortical spreading depression in migraine. Our findings help unify migraine neuroimaging literature and offer a migraine-specific target for neuromodulatory treatment.

SUBMITTER: Burke MJ 

PROVIDER: S-EPMC7009560 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mapping migraine to a common brain network.

Burke Matthew J MJ   Joutsa Juho J   Cohen Alexander L AL   Soussand Louis L   Cooke Danielle D   Burstein Rami R   Fox Michael D MD  

Brain : a journal of neurology 20200201 2


Inconsistent findings from migraine neuroimaging studies have limited attempts to localize migraine symptomatology. Novel brain network mapping techniques offer a new approach for linking neuroimaging findings to a common neuroanatomical substrate and localizing therapeutic targets. In this study, we attempted to determine whether neuroanatomically heterogeneous neuroimaging findings of migraine localize to a common brain network. We used meta-analytic coordinates of decreased grey matter volume  ...[more]

Similar Datasets

| S-EPMC9989143 | biostudies-literature
| S-EPMC7927231 | biostudies-literature
| S-EPMC6866778 | biostudies-literature
| S-EPMC10318550 | biostudies-literature
| S-EPMC6487231 | biostudies-literature
| S-EPMC6755613 | biostudies-literature
| S-EPMC8303126 | biostudies-literature
| S-EPMC4267352 | biostudies-literature
| S-EPMC9642815 | biostudies-literature
| S-EPMC4171725 | biostudies-literature