Unknown

Dataset Information

0

Determination of acrolein-associated T1 and T2 relaxation times and noninvasive detection using nuclear magnetic resonance and magnetic resonance spectroscopy.


ABSTRACT: An estimated 3.3 million people are living with a traumatic brain injury (TBI)-associated morbidity. Currently, only invasive and sacrificial methods exist to study neurochemical alterations following TBI. Nuclear magnetic resonance methods-magnetic resonance imaging (MRI) and spectroscopy (MRS)-are powerful tools which may be used non-invasively to diagnose a range of medical issues. These methods can be utilized to explore brain functionality, connectivity, and biochemistry. Unfortunately, many of the commonly studied brain metabolites (e.g., N-acetyl-aspartate, choline, creatine) remain relatively stable following mild to moderate TBI and may not be suitable for longitudinal assessment of injury severity and location. Therefore, a critical need exists to investigate alternative biomarkers of TBI, such as acrolein. Acrolein is a byproduct of lipid peroxidation and accumulates following damage to neuronal tissue. Acrolein has been shown to increase in post-mortem rat brain tissue following TBI. However, no methods exist to noninvasively quantify acrolein in vivo. Currently, we have characterized the T1 and T2 of acrolein via NMR saturation recovery and Carr-Purcell-Meiboom-Gill experiments, accordingly, to maximize the signal-to-noise ratio of acrolein obtained with MRS. Additionally, we have quantified acrolein in water and whole-brain phantom using PRESS MRS and standard post-processing methods. With this potential novel biomarker for assessing TBI, we can investigate methods for predicting acute and chronic neurological dysfunction in humans and animal models. By quantifying and localizing acrolein with MRS, and investigating neurological outcomes associated with in vivo measures, patient-specific interventions could be developed to decrease TBI-associated morbidity and improve quality of life.

SUBMITTER: Vike N 

PROVIDER: S-EPMC7015257 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Determination of acrolein-associated T<sub>1</sub> and T<sub>2</sub> relaxation times and noninvasive detection using nuclear magnetic resonance and magnetic resonance spectroscopy.

Vike Nicole N   Tang Jonathan J   Talavage Thomas T   Shi Riyi R   Rispoli Joseph J  

Applied magnetic resonance 20190725 11


An estimated 3.3 million people are living with a traumatic brain injury (TBI)-associated morbidity. Currently, only invasive and sacrificial methods exist to study neurochemical alterations following TBI. Nuclear magnetic resonance methods-magnetic resonance imaging (MRI) and spectroscopy (MRS)-are powerful tools which may be used non-invasively to diagnose a range of medical issues. These methods can be utilized to explore brain functionality, connectivity, and biochemistry. Unfortunately, man  ...[more]

Similar Datasets

| S-EPMC8749650 | biostudies-literature
| S-EPMC5575056 | biostudies-literature
| S-EPMC156628 | biostudies-literature
| S-EPMC2832044 | biostudies-literature
| S-EPMC3323964 | biostudies-literature
| S-EPMC4677409 | biostudies-literature
| S-EPMC4143926 | biostudies-literature
| S-EPMC10104196 | biostudies-literature
| S-EPMC6565728 | biostudies-literature
| S-EPMC10017611 | biostudies-literature