Unknown

Dataset Information

0

DNA replication acts as an error correction mechanism to maintain centromere identity by restricting CENP-A to centromeres.


ABSTRACT: Chromatin assembled with the histone H3 variant CENP-A is the heritable epigenetic determinant of human centromere identity. Using genome-wide mapping and reference models for 23 human centromeres, CENP-A binding sites are identified within the megabase-long, repetitive ?-satellite DNAs at each centromere. CENP-A is shown in early G1 to be assembled into nucleosomes within each centromere and onto 11,390 transcriptionally active sites on the chromosome arms. DNA replication is demonstrated to remove ectopically loaded, non-centromeric CENP-A. In contrast, tethering of centromeric CENP-A to the sites of DNA replication through the constitutive centromere associated network (CCAN) is shown to enable precise reloading of centromere-bound CENP-A onto the same DNA sequences as in its initial prereplication loading. Thus, DNA replication acts as an error correction mechanism for maintaining centromere identity through its removal of non-centromeric CENP-A coupled with CCAN-mediated retention and precise reloading of centromeric CENP-A.

SUBMITTER: Nechemia-Arbely Y 

PROVIDER: S-EPMC7015266 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

DNA replication acts as an error correction mechanism to maintain centromere identity by restricting CENP-A to centromeres.

Nechemia-Arbely Yael Y   Miga Karen H KH   Shoshani Ofer O   Aslanian Aaron A   McMahon Moira A MA   Lee Ah Young AY   Fachinetti Daniele D   Yates John R JR   Ren Bing B   Cleveland Don W DW  

Nature cell biology 20190603 6


Chromatin assembled with the histone H3 variant CENP-A is the heritable epigenetic determinant of human centromere identity. Using genome-wide mapping and reference models for 23 human centromeres, CENP-A binding sites are identified within the megabase-long, repetitive α-satellite DNAs at each centromere. CENP-A is shown in early G1 to be assembled into nucleosomes within each centromere and onto 11,390 transcriptionally active sites on the chromosome arms. DNA replication is demonstrated to re  ...[more]

Similar Datasets

2019-03-20 | GSE111381 | GEO
| PRJNA436748 | ENA
| S-EPMC6783363 | biostudies-literature
| S-EPMC3501172 | biostudies-literature
| S-EPMC7958389 | biostudies-literature
2024-02-14 | PXD047847 | Pride
| S-EPMC4846481 | biostudies-literature
| S-EPMC5740674 | biostudies-literature
| S-EPMC3207292 | biostudies-literature
| S-EPMC125570 | biostudies-literature