Unknown

Dataset Information

0

Reward sensitivity deficits in a rat model of compulsive eating behavior.


ABSTRACT: Compulsive eating behavior is hypothesized to be driven in part by reward deficits likely due to neuroadaptations to the mesolimbic dopamine (DA) system. Therefore, the aim of this study was to assess deficits in reward system functioning and mesolimbic DA after alternating a standard chow with palatable diet, a model of compulsive eating. In this model, rats in the control group (Chow/Chow) are provided a standard chow diet 7 days a week, while the experimental group (Chow/Palatable) is provided chow for 5 days a week ("C Phase"), followed by 2 days of access to a highly palatable sucrose diet ("P Phase"). We first tested the sensitivity to d-Amphetamine's stimulatory, reward-enhancing, and primary rewarding effects using a locomotor activity assay, an intracranial self-stimulation (ICSS) procedure, and a conditioned place preference test, respectively. We then quantified DA release in the nucleus accumbens (NAc) shell after treatment with d-Amphetamine using in vivo microdialysis, quantified levels of tyrosine hydroxylase (TH) and dopamine transporter (DAT) mRNA using quantitative polymerase chain reaction (qPCR), and lastly, quantified baseline extracellular DA and function of DAT in vivo using quantitative "no-net-flux" microdialysis. Chow/Palatable rats displayed blunted d-Amphetamine-induced locomotor activity, insensitivity to d-Amphetamine potentiation of ICSS threshold, and decreased place preference for d-Amphetamine during the P Phase. We found that Chow/Palatable rats had blunted DA efflux following d-Amphetamine treatment. Furthermore, DAT mRNA was increased in Chow/Palatable rats during the P Phase. Finally, quantitative "no-net-flux" microdialysis revealed reduced extracellular baseline DA and DAT function in Chow/Palatable rats. Altogether, these results provide evidence of reduced reward system functioning and related neuroadaptations in the DA and DAT systems in this model of compulsive eating. Reward deficits, resulting from repeated overeating, may in turn contribute to the perpetuation of compulsive eating behavior.

SUBMITTER: Moore CF 

PROVIDER: S-EPMC7021808 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Reward sensitivity deficits in a rat model of compulsive eating behavior.

Moore Catherine F CF   Leonard Michael Z MZ   Micovic Nicholas M NM   Miczek Klaus A KA   Sabino Valentina V   Cottone Pietro P  

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 20191017 4


Compulsive eating behavior is hypothesized to be driven in part by reward deficits likely due to neuroadaptations to the mesolimbic dopamine (DA) system. Therefore, the aim of this study was to assess deficits in reward system functioning and mesolimbic DA after alternating a standard chow with palatable diet, a model of compulsive eating. In this model, rats in the control group (Chow/Chow) are provided a standard chow diet 7 days a week, while the experimental group (Chow/Palatable) is provide  ...[more]

Similar Datasets

| S-EPMC9293859 | biostudies-literature
| S-EPMC2947358 | biostudies-literature
| S-EPMC5035817 | biostudies-other
| S-EPMC6333425 | biostudies-literature
| S-EPMC4076308 | biostudies-other
| S-EPMC3517570 | biostudies-literature
2024-12-18 | GSE262138 | GEO
| S-EPMC9777203 | biostudies-literature
| S-EPMC2944733 | biostudies-literature
| S-EPMC4367459 | biostudies-literature