Unknown

Dataset Information

0

Atomic-Scale Friction on Monovacancy-Defective Graphene and Single-Layer Molybdenum-Disulfide by Numerical Analysis.


ABSTRACT: Using numerical simulations, we study the atomic-scale frictional behaviors of monovacancy-defective graphene and single-layer molybdenum-disulfide (SLMoS2) based on the classical Prandtl-Tomlinson (PT) model with a modified interaction potential considering the Schwoebel-Ehrlich barrier. Due to the presence of a monovacancy defect on the surface, the frictional forces were significantly enhanced. The effects of the PT model parameters on the frictional properties of monovacancy-defective graphene and SLMoS2 were analyzed, and it showed that the spring constant of the pulling spring cx is the most influential parameter on the stick-slip motion in the vicinity of the vacancy defect. Besides, monovacancy-defective SLMoS2 is found to be more sensitive to the stick-slip motion at the vacancy defect site than monovacancy-defective graphene, which can be attributed to the complicated three-layer-sandwiched atomic structure of SLMoS2. The result suggests that the soft tip with a small spring constant can be an ideal candidate for the observation of stick-slip behaviors of the monovacancy-defective surface. This study can fill the gap in atomic-scale friction experiments and molecular dynamics simulations of 2D materials with vacancy-related defects.

SUBMITTER: Pang H 

PROVIDER: S-EPMC7023280 | biostudies-literature | 2020 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Atomic-Scale Friction on Monovacancy-Defective Graphene and Single-Layer Molybdenum-Disulfide by Numerical Analysis.

Pang Haosheng H   Wang Hongfa H   Li Minglin M   Gao Chenghui C  

Nanomaterials (Basel, Switzerland) 20200102 1


Using numerical simulations, we study the atomic-scale frictional behaviors of monovacancy-defective graphene and single-layer molybdenum-disulfide (SLMoS<sub>2</sub>) based on the classical Prandtl-Tomlinson (PT) model with a modified interaction potential considering the Schwoebel-Ehrlich barrier. Due to the presence of a monovacancy defect on the surface, the frictional forces were significantly enhanced. The effects of the PT model parameters on the frictional properties of monovacancy-defec  ...[more]

Similar Datasets

2024-06-27 | GSE235996 | GEO
| S-EPMC5364723 | biostudies-literature
| PRJNA988148 | ENA
| S-EPMC7179098 | biostudies-literature
| S-EPMC5943342 | biostudies-literature
| S-EPMC3642722 | biostudies-literature
| S-EPMC4348655 | biostudies-literature
| S-EPMC5951348 | biostudies-literature
| S-EPMC11350070 | biostudies-literature
| S-EPMC8956926 | biostudies-literature