Unknown

Dataset Information

0

Pacemaker function and neural responsiveness of subserosal interstitial cells of Cajal in the mouse colon.


ABSTRACT:

Key points

Rhythmic action potentials and intercellular Ca2+ waves are generated in smooth muscle cells of colonic longitudinal muscles (LSMC). Longitudinal muscle excitability is tuned by input from subserosal ICC (ICC-SS), a population of ICC with previously unknown function. ICC-SS express Ano1 channels and generate spontaneous Ca2+ transients in a stochastic manner. Release of Ca2+ and activation of Ano1 channels causes depolarization of ICC-SS and LSMC, leading to activation of L-type Ca2+ channels, action potentials, intercellular Ca2+ waves and contractions in LSMC. Nitrergic neural inputs regulate the Ca2+ events in ICC-SS. Pacemaker activity in longitudinal muscle is an emergent property as a result of integrated processes in ICC-SS and LSMC.

Abstract

Much is known about myogenic mechanisms in circular muscle (CM) in the gastrointestinal tract, although less is known about longitudinal muscle (LM). Two Ca2+ signalling behaviours occur in LM: localized intracellular waves not causing contractions and intercellular waves leading to excitation-contraction coupling. An Ano1 channel antagonist inhibited intercellular Ca2+ waves and LM contractions. Ano1 channels are expressed by interstitial cells of Cajal (ICC) but not by smooth muscle cells (SMCs). We investigated Ca2+ signalling in a novel population of ICC that lies along the subserosal surface of LM (ICC-SS) in mice expressing GCaMP6f in ICC. ICC-SS fired stochastic localized Ca2+ transients. Such events have been linked to activation of Ano1 channels in ICC. Ca2+ transients in ICC-SS occurred by release from stores most probably via inositol trisphosphate receptors. This activity relied on influx via store-operated Ca2+ entry and Orai channels. No voltage-dependent mechanism that synchronized Ca2+ transients in a single cell or between cells was found. Nitrergic agonists inhibited Ca2+ transients in ICC-SS, and stimulation of intrinsic nerves activated nitrergic responses in ICC-SS. Cessation of stimulation resulted in significant enhancement of Ca2+ transients compared to the pre-stimulus activity. No evidence of innervation by excitatory, cholinergic motor neurons was found. Our data suggest that ICC-SS contribute to regulation of LM motor activity. Spontaneous Ca2+ transients activate Ano1 channels in ICC-SS. Resulting depolarization conducts to SMCs, depolarizing membrane potential, activating L-type Ca2+ channels and initiating contraction. Rhythmic electrical and mechanical behaviours of LM are an emergent property of SMCs and ICC-SS.

SUBMITTER: Drumm BT 

PROVIDER: S-EPMC7024031 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Pacemaker function and neural responsiveness of subserosal interstitial cells of Cajal in the mouse colon.

Drumm Bernard T BT   Rembetski Benjamin E BE   Messersmith Katelyn K   Manierka Marena S MS   Baker Salah A SA   Sanders Kenton M KM  

The Journal of physiology 20200130 4


<h4>Key points</h4>Rhythmic action potentials and intercellular Ca<sup>2+</sup> waves are generated in smooth muscle cells of colonic longitudinal muscles (LSMC). Longitudinal muscle excitability is tuned by input from subserosal ICC (ICC-SS), a population of ICC with previously unknown function. ICC-SS express Ano1 channels and generate spontaneous Ca<sup>2+</sup> transients in a stochastic manner. Release of Ca<sup>2+</sup> and activation of Ano1 channels causes depolarization of ICC-SS and LS  ...[more]

Similar Datasets

| S-EPMC7806270 | biostudies-literature
| S-EPMC3887726 | biostudies-literature
| S-EPMC5301165 | biostudies-literature
| S-EPMC7093646 | biostudies-literature
| S-EPMC3887851 | biostudies-literature
| S-EPMC3154376 | biostudies-literature
| S-EPMC2077833 | biostudies-literature
| S-EPMC8743669 | biostudies-literature
| S-EPMC198276 | biostudies-literature
| S-EPMC5206290 | biostudies-literature