Metformin Reduces the Senescence of Renal Tubular Epithelial Cells in Diabetic Nephropathy via the MBNL1/miR-130a-3p/STAT3 Pathway.
Ontology highlight
ABSTRACT: Senescence of renal tubular epithelial cells plays an important role in diabetic nephropathy, but the mechanism is unknown. Metformin may alleviate diabetic nephropathy by reducing this senescence. This study is aimed at clarifying the effects and mechanism of metformin on the senescence of renal tubular epithelial cells in diabetic nephropathy. We found that metformin reduced the expression of senescence-associated gene P21 in high-glucose-induced (30?mmol/L) renal tubular epithelial cells and decreased the ?-galactosidase positive staining rate (decreased 16%, p < 0.01). Metformin was able to reduce senescence by upregulating the expression of RNA-binding protein MBNL1 and miR-130a-3p and reducing STAT3 expression. MBNL1 prolonged the half-life of miR-130a-3p, and miR-130a-3p could negatively regulate STAT3 by binding to its mRNA 3'UTR. In db/db diabetic mice, we found an enhanced senescence level combined with low expression of MBNL1 and miR-130a-3p and high expression of STAT3 compared with db/m control mice during nephropathy development. Meanwhile, metformin (200?mg/kg/day) could increase the expression of MBNL1 and miR-130a-3p and decreased STAT3 expression, thus reducing this senescence in db/db mice. Our results suggest that metformin reduces the senescence of renal tubular epithelial cells in diabetic nephropathy via the MBNL1/miR-130a-3p/STAT3 pathway, which provided new ideas for the therapy of this disease.
SUBMITTER: Jiang X
PROVIDER: S-EPMC7035567 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA