Unknown

Dataset Information

0

Strong suppression of gene conversion with increasing DNA double-strand break load delimited by 53BP1 and RAD52.


ABSTRACT: In vertebrates, genomic DNA double-strand breaks (DSBs) are removed by non-homologous end-joining processes: classical non-homologous end-joining (c-NHEJ) and alternative end-joining (alt-EJ); or by homology-dependent processes: gene-conversion (GC) and single-strand annealing (SSA). Surprisingly, these repair pathways are not real alternative options restoring genome integrity with equal efficiency, but show instead striking differences in speed, accuracy and cell-cycle-phase dependence. As a consequence, engagement of one pathway may be associated with processing-risks for the genome absent from another pathway. Characterization of engagement-parameters and their consequences is, therefore, essential for understanding effects on the genome of DSB-inducing agents, such as ionizing-radiation (IR). Here, by addressing pathway selection in G2-phase, we discover regulatory confinements in GC with consequences for SSA- and c-NHEJ-engagement. We show pronounced suppression of GC with increasing DSB-load that is not due to RAD51 availability and which is delimited but not defined by 53BP1 and RAD52. Strikingly, at low DSB-loads, GC repairs ?50% of DSBs, whereas at high DSB-loads its contribution is undetectable. Notably, with increasing DSB-load and the associated suppression of GC, SSA gains ground, while alt-EJ is suppressed. These observations explain earlier, apparently contradictory results and advance our understanding of logic and mechanisms underpinning the wiring between DSB repair pathways.

SUBMITTER: Mladenov E 

PROVIDER: S-EPMC7038941 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Strong suppression of gene conversion with increasing DNA double-strand break load delimited by 53BP1 and RAD52.

Mladenov Emil E   Staudt Christian C   Soni Aashish A   Murmann-Konda Tamara T   Siemann-Loekes Maria M   Iliakis George G  

Nucleic acids research 20200201 4


In vertebrates, genomic DNA double-strand breaks (DSBs) are removed by non-homologous end-joining processes: classical non-homologous end-joining (c-NHEJ) and alternative end-joining (alt-EJ); or by homology-dependent processes: gene-conversion (GC) and single-strand annealing (SSA). Surprisingly, these repair pathways are not real alternative options restoring genome integrity with equal efficiency, but show instead striking differences in speed, accuracy and cell-cycle-phase dependence. As a c  ...[more]

Similar Datasets

| S-EPMC5547995 | biostudies-literature
| S-EPMC2223384 | biostudies-literature
| S-EPMC3594748 | biostudies-literature
| S-EPMC2351957 | biostudies-literature
| S-EPMC3568336 | biostudies-literature
| S-EPMC10018360 | biostudies-literature
| S-EPMC6898758 | biostudies-literature
| S-EPMC9638026 | biostudies-literature
| S-EPMC5778472 | biostudies-literature