Project description:The appropriate execution of DNA double-strand break (DSB) repair is critical for genome stability and tumor avoidance. 53BP1 and BRCA1 directly influence DSB repair pathway choice by regulating 5' end resection, but how this is achieved remains uncertain. Here we report that Rif1(-/-) mice are severely compromised for 53BP1-dependent class switch recombination (CSR) and fusion of dysfunctional telomeres. The inappropriate accumulation of RIF1 at DSBs in S phase is antagonized by BRCA1, and deletion of Rif1 suppresses toxic nonhomologous end joining (NHEJ) induced by PARP inhibition in Brca1-deficient cells. Mechanistically, RIF1 is recruited to DSBs via the N-terminal phospho-SQ/TQ domain of 53BP1, and DSBs generated by ionizing radiation or during CSR are hyperresected in the absence of RIF1. Thus, RIF1 and 53BP1 cooperate to block DSB resection to promote NHEJ in G1, which is antagonized by BRCA1 in S phase to ensure a switch of DSB repair mode to homologous recombination.
Project description:Smarcal1 is a SWI/SNF-family protein with an ATPase domain involved in DNA-annealing activities and a binding site for the RPA single-strand-DNA-binding protein. Although the role played by Smarcal1 in the maintenance of replication forks has been established, it remains unknown whether Smarcal1 contributes to genomic DNA maintenance outside of the S phase. We disrupted the SMARCAL1 gene in both the chicken DT40 and the human TK6 B cell lines. The resulting SMARCAL1(-/-) clones exhibited sensitivity to chemotherapeutic topoisomerase 2 inhibitors, just as nonhomologous end-joining (NHEJ) null-deficient cells do. SMARCAL1(-/-) cells also exhibited an increase in radiosensitivity in the G1 phase. Moreover, the loss of Smarcal1 in NHEJ null-deficient cells does not further increase their radiosensitivity. These results demonstrate that Smarcal1 is required for efficient NHEJ-mediated DSB repair. Both inactivation of the ATPase domain and deletion of the RPA-binding site cause the same phenotype as does null-mutation of Smarcal1, suggesting that Smarcal1 enhances NHEJ, presumably by interacting with RPA at unwound single-strand sequences and then facilitating annealing at DSB ends. SMARCAL1(-/-)cells showed a poor accumulation of Ku70/DNA-PKcs and XRCC4 at DNA-damage sites. We propose that Smarcal1 maintains the duplex status of DSBs to ensure proper recruitment of NHEJ factors to DSB sites.
Project description:Double-strand breaks (DSBs) are one of the most harmful DNA lesions. Cells utilize two main pathways for DSB repair: homologous recombination (HR) and nonhomologous end-joining (NHEJ). NHEJ can be subdivided into the KU-dependent classical NHEJ (c-NHEJ) and the more error-prone KU-independent backup-NHEJ (b-NHEJ) pathways, involving the poly (ADP-ribose) polymerases (PARPs). However, in the absence of these factors, cells still seem able to adequately maintain genome integrity, suggesting the presence of other b-NHEJ repair factors or pathways independent from KU and PARPs. The outcome of DSB repair by NHEJ pathways can be investigated by using artificial sequence-specific nucleases such as CRISPR/Cas9 to induce DSBs at a target of interest. Here, we used CRISPR/Cas9 for DSB induction at the Arabidopsis cruciferin 3 (CRU3) and protoporphyrinogen oxidase (PPO) genes. DSB repair outcomes via NHEJ were analyzed using footprint analysis in wild-type plants and plants deficient in key factors of c-NHEJ (ku80), b-NHEJ (parp1 parp2), or both (ku80 parp1 parp2). We found that larger deletions of >20 bp predominated after DSB repair in ku80 and ku80 parp1 parp2 mutants, corroborating with a role of KU in preventing DSB end resection. Deletion lengths did not significantly differ between ku80 and ku80 parp1 parp2 mutants, suggesting that a KU- and PARP-independent b-NHEJ mechanism becomes active in these mutants. Furthermore, microhomologies and templated insertions were observed at the repair junctions in the wild type and all mutants. Since these characteristics are hallmarks of polymerase θ-mediated DSB repair, we suggest a possible role for this recently discovered polymerase in DSB repair in plants.
Project description:Nonhomologous end-joining (NHEJ) pathways repair DNA double-strand breaks (DSBs) in eukaryotes and many prokaryotes, although it is not reported to operate in the third domain of life, archaea. Here, we describe a complete NHEJ complex, consisting of DNA ligase (Lig), polymerase (Pol), phosphoesterase (PE), and Ku from a mesophillic archaeon, Methanocella paludicola (Mpa). Mpa Lig has limited DNA nick-sealing activity but is efficient in ligating nicks containing a 3' ribonucleotide. Mpa Pol preferentially incorporates nucleoside triphosphates onto a DNA primer strand, filling DNA gaps in annealed breaks. Mpa PE sequentially removes 3' phosphates and ribonucleotides from primer strands, leaving a ligatable terminal 3' monoribonucleotide. These proteins, together with the DNA end-binding protein Ku, form a functional NHEJ break-repair apparatus that is highly homologous to the bacterial complex. Although the major roles of Pol and Lig in break repair have been reported, PE's function in NHEJ has remained obscure. We establish that PE is required for ribonucleolytic resection of RNA intermediates at annealed DSBs. Polymerase-catalyzed strand-displacement synthesis on DNA gaps can result in the formation of nonligatable NHEJ intermediates. The function of PE in NHEJ repair is to detect and remove inappropriately incorporated ribonucleotides or phosphates from 3' ends of annealed DSBs to configure the termini for ligation. Thus, PE prevents the accumulation of abortive genotoxic DNA intermediates arising from strand displacement synthesis that otherwise would be refractory to repair.
Project description:Bcl2 can enhance susceptibility to carcinogenesis, but the mechanism(s) remains fragmentary. Here we discovered that Bcl2 suppresses DNA double-strand-break (DSB) repair and V(D)J recombination by downregulating Ku DNA binding activity, which is associated with increased genetic instability. Exposure of cells to ionizing radiation enhances Bcl2 expression in the nucleus, which interacts with both Ku70 and Ku86 via its BH1 and BH4 domains. Removal of the BH1 or BH4 domain abrogates the inhibitory effect of Bcl2 on Ku DNA binding, DNA-PK, and DNA end-joining activities, which results in the failure of Bcl2 to block DSB repair as well as V(D)J recombination. Intriguingly, Bcl2 directly disrupts the Ku/DNA-PKcs complex in vivo and in vitro. Thus, Bcl2 suppression of the general DSB repair and V(D)J recombination may occur in a mechanism by inhibiting the nonhomologous end-joining pathway, which may lead to an accumulation of DNA damage and genetic instability.
Project description:Double-strand DNA breaks are common events in eukaryotic cells, and there are two major pathways for repairing them: homologous recombination (HR) and nonhomologous DNA end joining (NHEJ). The various causes of double-strand breaks (DSBs) result in a diverse chemistry of DNA ends that must be repaired. Across NHEJ evolution, the enzymes of the NHEJ pathway exhibit a remarkable degree of structural tolerance in the range of DNA end substrate configurations upon which they can act. In vertebrate cells, the nuclease, DNA polymerases, and ligase of NHEJ are the most mechanistically flexible and multifunctional enzymes in each of their classes. Unlike repair pathways for more defined lesions, NHEJ repair enzymes act iteratively, act in any order, and can function independently of one another at each of the two DNA ends being joined. NHEJ is critical not only for the repair of pathologic DSBs as in chromosomal translocations, but also for the repair of physiologic DSBs created during variable (diversity) joining [V(D)J] recombination and class switch recombination (CSR). Therefore, patients lacking normal NHEJ are not only sensitive to ionizing radiation (IR), but also severely immunodeficient.
Project description:Nonhomologous end-joining (NHEJ) is a major repair pathway for DNA double-strand breaks (DSBs), involving synapsis and ligation of the broken strands. We describe the use of in vivo and in vitro single-molecule methods to define the organization and interaction of NHEJ repair proteins at DSB ends. Super-resolution fluorescence microscopy allowed the precise visualization of XRCC4, XLF, and DNA ligase IV filaments adjacent to DSBs, which bridge the broken chromosome and direct rejoining. We show, by single-molecule FRET analysis of the Ku/XRCC4/XLF/DNA ligase IV NHEJ ligation complex, that end-to-end synapsis involves a dynamic positioning of the two ends relative to one another. Our observations form the basis of a new model for NHEJ that describes the mechanism whereby filament-forming proteins bridge DNA DSBs in vivo. In this scheme, the filaments at either end of the DSB interact dynamically to achieve optimal configuration and end-to-end positioning and ligation.
Project description:The nonhomologous end-joining (NHEJ) pathway is essential for the preservation of genome integrity, as it efficiently repairs DNA double-strand breaks (DSBs). Previous biochemical and genetic investigations have indicated that, despite the importance of this pathway, the entire complement of genes regulating NHEJ remains unknown. To address this, we employed a plasmid-based NHEJ DNA repair screen in budding yeast (Saccharomyces cerevisiae) using 369 putative nonessential DNA repair-related components as queries. Among the newly identified genes associated with NHEJ deficiency upon disruption are two spindle assembly checkpoint kinases, Bub1 and Bub2. Both observation of resulting phenotypes and chromatin immunoprecipitation demonstrated that Bub1 and -2, either alone or in combination with cell cycle regulators, are recruited near the DSB, where phosphorylated Rad53 or H2A accumulates. Large-scale proteomic analysis of Bub kinases phosphorylated in response to DNA damage identified previously unknown kinase substrates on Tel1 S/T-Q sites. Moreover, Bub1 NHEJ function appears to be conserved in mammalian cells. 53BP1, which influences DSB repair by NHEJ, colocalizes with human BUB1 and is recruited to the break sites. Thus, while Bub is not a core component of NHEJ machinery, our data support its dual role in mitotic exit and promotion of NHEJ repair in yeast and mammals.
Project description:End processing at DNA double strand breaks (DSB) is a decisive step in repair pathway selection. Here, we investigated the role of 53BP1/RIF1 in limiting BRCA1/CtIP-mediated end resection to control DSB repair pathway choice. ATM orchestrates this process through 53BP1 phosphorylation to promote RIF1 recruitment. As cells enter S/G2-phase, end resection is activated, which displaces pATM from DSB sites and diminishes 53BP1 phosphorylation and RIF1 recruitment. Consistently, the kinetics of ATM and 53BP1 phosphorylation in S/G2-phase concur. We show that defective 53BP1/RIF1-mediated DSB end-protection in G1-phase stimulates CtIP/MRE11-dependent end-resection, which requires Polo-like kinase 3. This end resection activity in G1 was shown to produce only short tracks of ssDNA overhangs, as evidenced by the findings that in 53BP1 depleted cells, (i) RPA focus intensity was significantly lower in G1 compared to that in S/G2 phase, and (ii) EXO1 knockdown did not alter either number or intensity of RPA foci in G1 but significantly decreased the RPA focus intensity in S/G2 phase. Importantly, we report that the observed DSB end resection in G1 phase inhibits DNA-PK-dependent nonhomologous end joining but is not sufficient to stimulate HR. Instead, it switches the repair to the alternative PARP1-dependent end joining pathway.
Project description:Repair of double-strand DNA breaks (DSBs) by the homologous recombination (HR) pathway results in crossovers (COs) required for a successful first meiotic division. Mre11 is one member of the MRX/N (Mre11, Rad50, and Xrs2/Nbs1) complex required for meiotic DSB formation and for resection in Saccharomyces cerevisiae. In Caenorhabditis elegans, evidence for the MRX/N role in DSB resection is limited. We report the first separation-of-function allele, mre-11(iow1) in C. elegans, which is specifically defective in meiotic DSB resection but not in formation. The mre-11(iow1) mutants displayed chromosomal fragmentation and aggregation in late prophase I. Recombination intermediates and crossover formation was greatly reduced in mre-11(iow1) mutants. Irradiation-induced DSBs during meiosis failed to be repaired from early to middle prophase I in mre-11(iow1) mutants. In the absence of a functional HR, our data suggest that some DSBs in mre-11(iow1) mutants are repaired by the nonhomologous end joining (NHEJ) pathway, as removing NHEJ partially suppressed the meiotic defects shown by mre-11(iow1). In the absence of NHEJ and a functional MRX/N, meiotic DSBs are channeled to EXO-1-dependent HR repair. Overall, our analysis supports a role for MRE-11 in the resection of DSBs in middle meiotic prophase I and in blocking NHEJ.