Unknown

Dataset Information

0

A Robust Method Uncovers Significant Context-Specific Heritability in Diverse Complex Traits.


ABSTRACT: Gene-environment interactions (GxE) can be fundamental in applications ranging from functional genomics to precision medicine and is a conjectured source of substantial heritability. However, unbiased methods to profile GxE genome-wide are nascent and, as we show, cannot accommodate general environment variables, modest sample sizes, heterogeneous noise, and binary traits. To address this gap, we propose a simple, unifying mixed model for gene-environment interaction (GxEMM). In simulations and theory, we show that GxEMM can dramatically improve estimates and eliminate false positives when the assumptions of existing methods fail. We apply GxEMM to a range of human and model organism datasets and find broad evidence of context-specific genetic effects, including GxSex, GxAdversity, and GxDisease interactions across thousands of clinical and molecular phenotypes. Overall, GxEMM is broadly applicable for testing and quantifying polygenic interactions, which can be useful for explaining heritability and invaluable for determining biologically relevant environments.

SUBMITTER: Dahl A 

PROVIDER: S-EPMC7042488 | biostudies-literature | 2020 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Robust Method Uncovers Significant Context-Specific Heritability in Diverse Complex Traits.

Dahl Andy A   Nguyen Khiem K   Cai Na N   Gandal Michael J MJ   Flint Jonathan J   Zaitlen Noah N  

American journal of human genetics 20200101 1


Gene-environment interactions (GxE) can be fundamental in applications ranging from functional genomics to precision medicine and is a conjectured source of substantial heritability. However, unbiased methods to profile GxE genome-wide are nascent and, as we show, cannot accommodate general environment variables, modest sample sizes, heterogeneous noise, and binary traits. To address this gap, we propose a simple, unifying mixed model for gene-environment interaction (GxEMM). In simulations and  ...[more]

Similar Datasets

| S-EPMC5862984 | biostudies-literature
| S-EPMC3084207 | biostudies-literature
| S-EPMC5493198 | biostudies-literature
| S-EPMC4751621 | biostudies-literature
| S-EPMC8341714 | biostudies-literature
| S-EPMC4244251 | biostudies-literature
| S-EPMC6030885 | biostudies-literature
| S-EPMC6349408 | biostudies-literature
| S-EPMC10925220 | biostudies-literature
| S-EPMC9810332 | biostudies-literature