Successively Regioselective Electrosynthesis and Electron Transport Property of Stable Multiply Functionalized [60]Fullerene Derivatives.
Ontology highlight
ABSTRACT: With the recent advance in chemical modification of fullerenes, electrosynthesis has demonstrated increasing importance in regioselective synthesis of novel fullerene derivatives. Herein, we report successively regioselective synthesis of stable tetra- and hexafunctionalized [60]fullerene derivatives. The cycloaddition reaction of the electrochemically generated dianions from [60]fulleroindolines with phthaloyl chloride regioselectively affords 1,2,4,17-functionalized [60]fullerene derivatives with two attached ketone groups and a unique addition pattern, where the heterocycle is rearranged to a [5,6]-junction and the carbocycle is fused to an adjacent [6,6]-junction. This addition pattern is in sharp contrast with that of the previously reported biscycloadducts, where both cycles are appended to [6,6]-junctions. The obtained tetrafunctionalized compounds can be successively manipulated to 1,2,3,4,9,10-functionalized [60]fullerene derivatives with an intriguing "S"-shaped configuration via a novel electrochemical protonation. Importantly, the stability of tetrafunctionalized [60]fullerene products allows them to be applied in planar perovskite solar cells as efficient electron transport layers.
SUBMITTER: Yan XX
PROVIDER: S-EPMC7044465 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA