The impact of wipe sampling variables on method performance associated with indoor pesticide misuse and highly contaminated areas.
Ontology highlight
ABSTRACT: Pesticide misuse incidents in residential indoor areas are typically associated with misapplications that are inconsistent with the label directions of the product. Surface wipe sampling and analysis procedures are relied upon to evaluate the extent of indoor contamination and the remediation efforts successfully. In general, surface wipe sampling procedures are widely varied, which can complicate the comparison of the results and data interpretation. Wipe sampling parameters were studied for the insecticides malathion and carbaryl. The parameters evaluated include wipe media, wetting solvents, composite sampling, surface concentration, and the influence of differing product formulations. Porous and nonporous surfaces tested include vinyl tile, plywood and painted drywall (porous/permeable) and stainless steel and glass (nonporous/impermeable). Specific wipe materials included pre-packaged sterile-cotton gauze, pre-cleaned cotton twill, cotton balls, and a pre-packaged, pre-wetted wipe. Commercially available insecticide formulations were tested, and the results were compared to surfaces fortified with neat analytes to determine surface recovery results (efficiency). A sampling procedure to measure pesticide residues was developed, and variables associated with the sampling methods were evaluated to clarify how estimations of surface residues are impacted. Malathion recoveries were 73-86% for twill and pre-wetted, pre-packaged isopropanol wipes on nonporous materials. Malathion formulations ranged from 78 to 124% for pre-wetted, pre-packaged isopropanol wipes and cotton gauze wipes on nonporous materials. Carbaryl and carbaryl formulation recoveries were 82-115% and 77-110%, respectively, on nonporous surfaces for all tested wipe materials. While not every wipe sampling variable could be tested, the collected information from this study may be useful and applied to sampling plans for classes of chemicals with similar physicochemical properties.
SUBMITTER: Willison SA
PROVIDER: S-EPMC7045174 | biostudies-literature | 2019 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA