Unknown

Dataset Information

0

Hypoosmotic stress induces flagellar biosynthesis and swimming motility in Escherichia albertii.


ABSTRACT: Bacteria use flagella as propellers to move to favorable environments. Escherichia albertii, a growing cause of foodborne illness and diarrhea, is reportedly non-motile and lacks flagella on its surface. Here, we report that 27 out of 59 E. albertii strains, collected mainly from humans and birds, showed swimming motility when cultured at low osmotic pressure. The biosynthesis of flagella in E. albertii cells was induced under ambient temperature and hypoosmotic pressure: conditions which resemble aquatic environments. Flagellar induction increased E. albertii survival in the intestinal epithelial cell culture containing gentamicin. Although genes involved in chemotaxis are not present in the E. albertii genome, the addition of glutamic acid, an amino acid known to regulate the internal cell osmolarity, augmented the proportion of swimming cells by 35-fold. These results suggest that flagellar biosynthesis and motility in E. albertii cells are controlled by their internal and external osmolarity.

SUBMITTER: Ikeda T 

PROVIDER: S-EPMC7048735 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hypoosmotic stress induces flagellar biosynthesis and swimming motility in Escherichia albertii.

Ikeda Tetsuya T   Shinagawa Toshie T   Ito Takuya T   Ohno Yuta Y   Kubo Akiko A   Nishi Junichiro J   Gotoh Yasuhiro Y   Ogura Yoshitoshi Y   Ooka Tadasuke T   Hayashi Tetsuya T  

Communications biology 20200228 1


Bacteria use flagella as propellers to move to favorable environments. Escherichia albertii, a growing cause of foodborne illness and diarrhea, is reportedly non-motile and lacks flagella on its surface. Here, we report that 27 out of 59 E. albertii strains, collected mainly from humans and birds, showed swimming motility when cultured at low osmotic pressure. The biosynthesis of flagella in E. albertii cells was induced under ambient temperature and hypoosmotic pressure: conditions which resemb  ...[more]

Similar Datasets

| S-EPMC7003939 | biostudies-literature
2006-03-23 | GSE4511 | GEO
| S-EPMC4965754 | biostudies-literature
| S-EPMC538838 | biostudies-literature
| S-EPMC7326100 | biostudies-literature
| S-EPMC3434748 | biostudies-literature
| S-EPMC4222179 | biostudies-literature
| S-EPMC7002133 | biostudies-literature
| S-EPMC3309589 | biostudies-literature
| S-EPMC8787215 | biostudies-literature